Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 20(11): 7828-7834, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33084344

ABSTRACT

Spin currents can exert spin-transfer torques on magnetic systems even in the limit of vanishingly small net magnetization, as recently shown for antiferromagnets. Here, we experimentally show that a spin-transfer torque is operative in a macroscopic ensemble of weakly interacting, randomly magnetized Co nanomagnets. We employ element- and time-resolved X-ray ferromagnetic resonance (XFMR) spectroscopy to directly detect subnanosecond dynamics of the Co nanomagnets, excited into precession with cone angle ≳0.003° by an oscillating spin current. XFMR measurements reveal that as the net moment of the ensemble decreases, the strength of the spin-transfer torque increases relative to those of magnetic field torques. Our findings point to spin-transfer torque as an effective way to manipulate the state of nanomagnet ensembles at subnanosecond time scales.

2.
Nano Lett ; 18(2): 1264-1268, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29365261

ABSTRACT

Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and, thus, to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak anti-localization, and the weak links of the superconducting quantum interference devices (SQUID) exhibit fully gapped proximity-induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2π periodicity, possibly dominated by the bulk conductivity.

3.
Sci Rep ; 7: 40586, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28094279

ABSTRACT

A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...