Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1389589, 2024.
Article in English | MEDLINE | ID: mdl-38887265

ABSTRACT

Food intake behavior is under the tight control of the central nervous system. Most studies to date focus on the contribution of neurons to this behavior. However, although previously overlooked, astrocytes have recently been implicated to play a key role in feeding control. Most of the recent literature has focused on astrocytic contribution in the hypothalamus or the dorsal vagal complex. The contribution of astrocytes located in the lateral parabrachial nucleus (lPBN) to feeding behavior control remains poorly understood. Thus, here, we first investigated whether activation of lPBN astrocytes affects feeding behavior in male and female rats using chemogenetic activation. Astrocytic activation in the lPBN led to profound anorexia in both sexes, under both ad-libitum feeding schedule and after a fasting challenge. Astrocytes have a key contribution to glutamate homeostasis and can themselves release glutamate. Moreover, lPBN glutamate signaling is a key contributor to potent anorexia, which can be induced by lPBN activation. Thus, here, we determined whether glutamate signaling is necessary for lPBN astrocyte activation-induced anorexia, and found that pharmacological N-methyl D-aspartate (NMDA) receptor blockade attenuated the food intake reduction resulting from lPBN astrocyte activation. Since astrocytes have been shown to contribute to feeding control by modulating the feeding effect of peripheral feeding signals, we further investigated whether lPBN astrocyte activation is capable of modulating the anorexic effect of the gut/brain hormone, glucagon like peptide -1, as well as the orexigenic effect of the stomach hormone - ghrelin, and found that the feeding effect of both signals is modulated by lPBN astrocytic activation. Lastly, we found that lPBN astrocyte activation-induced anorexia is affected by a diet-induced obesity challenge, in a sex-divergent manner. Collectively, current findings uncover a novel role for lPBN astrocytes in feeding behavior control.


Subject(s)
Astrocytes , Eating , Parabrachial Nucleus , Animals , Astrocytes/metabolism , Astrocytes/physiology , Male , Female , Rats , Eating/physiology , Parabrachial Nucleus/physiology , Anorexia/metabolism , Feeding Behavior/physiology , Rats, Sprague-Dawley , Glutamic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
2.
Article in English | MEDLINE | ID: mdl-38821753

ABSTRACT

The past decades have witnessed the rise and fall of several, largely unsuccessful, therapeutic attempts to bring the escalating obesity pandemic to a halt. Looking back to look ahead, the field has now put its highest hopes in translating insights from how the gastrointestinal (GI) tract communicates with the brain to calibrate behavior, physiology, and metabolism. A major focus of this review is to summarize the latest advances in comprehending the neuroendocrine aspects of this so-called 'gut-brain axis' and to explore novel concepts, cutting-edge technologies, and recent paradigm-shifting experiments. These exciting insights continue to refine our understanding of gut-brain crosstalk and are poised to promote the development of additional therapeutic avenues at the dawn of a new era of antiobesity therapeutics.

3.
medRxiv ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38352405

ABSTRACT

Background and Objectives: Emerging preclinical evidence suggests that vagal signals contribute to the development of schizophrenia-related abnormalities in brain and behavior. Whether vagal communication in general, and its impairment in particular, is a risk factor for schizophrenia in humans remains, however, unclear. Vagotomy, the surgical lesion of the vagus nerve, was routinely performed as a treatment for peptic ulcer before modern treatment options were available. Hence, the primary aim of this study was to investigate whether vagotomy modulates the subsequent risk of developing schizophrenia. Moreover, given the existence of diverse vagotomy techniques (i.e., "truncal" or "selective"), our secondary goal was to test whether the extent of denervation modulates the risk of schizophrenia. Methods: Using a nationwide retrospective matched cohort design, we identified 8,315 vagotomized individuals from the Swedish National Patient Register during the period 1970-2020 and 40,855 non-vagotomized individuals matching for age, sex and type of peptic ulcer. The risk of being diagnosed with schizophrenia and associated psychoses (ICD10 codes F20-29) was analyzed using Cox proportional hazards regression models, including death as competing risk. Results: When considering all types of vagotomy together, vagotomy was not significantly associated with schizophrenia (HR: 0.91 [0.72; 1.16]). However, truncal vagotomy (which denervates all subdiaphragmatic organs) significantly increased the risk of developing schizophrenia by 69% (HR: 1.69 [1.08; 2.64]), whereas selective vagotomy (which only denervates the stomach) showed no significant association (HR: 0.80 [0.61; 1.04]). Discussion: Our results provide epidemiological support for the hypothesis that impairments in vagal functions could increase the risk of schizophrenia. Notably, the finding that truncal but not selective vagotomy is associated with an increased risk of schizophrenia raises the possibility that the activity of subdiaphragmatic non-gastric vagal branches may be of particular relevance for the development of schizophrenia.

4.
Sci Rep ; 14(1): 563, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177175

ABSTRACT

Polycystic ovary syndrome (PCOS) is associated with symptoms of moderate to severe anxiety and depression. Hyperandrogenism is a key feature together with lower levels of the adipocyte hormone adiponectin. Androgen exposure leads to anxiety-like behavior in female offspring while adiponectin is reported to be anxiolytic. Here we test the hypothesis that elevated adiponectin levels protect against the development of androgen-induced anxiety-like behavior. Pregnant mice overexpressing adiponectin (APNtg) and wildtypes were injected with vehicle or dihydrotestosterone to induce prenatal androgenization (PNA) in the offspring. Metabolic profiling and behavioral tests were performed in 4-month-old female offspring. PNA offspring spent more time in the closed arms of the elevated plus maze, indicating anxiety-like behavior. Intriguingly, neither maternal nor offspring adiponectin overexpression prevented an anxiety-like behavior in PNA-exposed offspring. However, adiponectin overexpression in dams had metabolic imprinting effects, shown as lower fat mass and glucose levels in their offspring. While serum adiponectin levels were elevated in APNtg mice, cerebrospinal fluid levels were similar between genotypes. Adiponectin overexpression improved metabolic functions but did not elicit anxiolytic effects in PNA-exposed offspring. These observations might be attributed to increased circulating but unchanged cerebrospinal fluid adiponectin levels in APNtg mice. Thus, increased adiponectin levels in the brain are likely needed to stimulate anxiolytic effects.


Subject(s)
Anti-Anxiety Agents , Polycystic Ovary Syndrome , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Mice , Female , Animals , Polycystic Ovary Syndrome/metabolism , Androgens/adverse effects , Adiponectin , Anti-Anxiety Agents/adverse effects , Anxiety/metabolism , Prenatal Exposure Delayed Effects/chemically induced
5.
Front Neurosci ; 17: 1265080, 2023.
Article in English | MEDLINE | ID: mdl-37942137

ABSTRACT

Glucagon-like peptide-1 (GLP-1) analogs represent a new class of weight-loss medication, which has recently exponentially grown in popularity. GLP-1 is produced in the intestinal L cells in response to macronutrient intake, but it is also produced in the brain in a subset of neurons in the nucleus of the solitary tract (NTS). Exogenously-delivered GLP-1 analogs reduce food intake and food-motivated behavior in male and female rats, with some sex divergence of these effects in specific brain sites. These analogs potentially target GLP-1 receptors endogenously supplied by the gut and brain-produced GLP-1. The function of the NTS GLP-1-producing neurons [Gcg neurons] is still relatively unknown in rats. Moreover, even less is understood about the function of these neurons in females. We have recently developed a transgenic rat that expresses Cre under the Gcg promoter. Here, we interrogate this new animal model with optogenetics and chemogenetics to determine whether activation of the NTS GLP-1 neurons affects ingestive and motivated behavior in male and female rats. Optogenetic activation of the NTS Gcg neurons robustly reduced chow intake in both male and female rats. Interestingly, motivated behavior for a sucrose reward was reduced exclusively in females. To ensure that this unexpected sex difference was not activation method-specific, we next virally introduced excitatory DREADD receptors into the Gcg neurons and investigated the effect of chemogenetic activation of these neurons on ingestive and motivated behavior. Even upon chemogenetic activation, female rats reduced their motivation to obtain the sucrose reward, yet no effect on this behavior was observed in males. Our results show that activation of hindbrain Gcg neurons is sufficient to reduce food intake in both sexes. In females, but not males, Gcg neuron activation alone is also sufficient to reduce motivated behavior for sucrose. Thus, there is a sex difference in the ability of GLP-1-producing neuron activation to control motivated behavior for food.

6.
Transl Psychiatry ; 13(1): 331, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891191

ABSTRACT

While aggression is an adaptive behavior mostly triggered by competition for resources, it can also in and of itself be rewarding. Based on the common notion that female rats are not aggressive, much of aggression research has been centered around males, leading to a gap in the understanding of the female aggression neurobiology. Therefore, we asked whether intact virgin female rats experience reward from an aggressive interaction and assessed aggression seeking behavior in rats of both sexes. To validate the involvement of reward signaling, we measured mesolimbic dopamine turnover and determined the necessity of dopamine signaling for expression of aggression-seeking. Together our data indicate that female rats exhibit aggressive behavior outside of maternal context, experience winning aggressive behaviors as rewarding, and do so to a similar extent as male rats and in a dopamine-dependent manner.


Subject(s)
Appetite , Dopamine , Rats , Male , Female , Animals , Aggression , Reward
7.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834860

ABSTRACT

Recent developments suggest that increased glucagon and decreased somatostatin secretion from the pancreas contribute to hyperglycaemia in type-2 diabetes (T2D) patients. There is a huge need to understand changes in glucagon and somatostatin secretion to develop potential anti-diabetic drugs. To further describe the role of somatostatin in the pathogenesis of T2D, reliable means to detect islet δ-cells and somatostatin secretion are necessary. In this study, we first tested currently available anti-somatostatin antibodies against a mouse model that fluorescently labels δ-cells. We found that these antibodies only label 10-15% of the fluorescently labelled δ-cells in pancreatic islets. We further tested six antibodies (newly developed) that can label both somatostatin 14 (SST14) and 28 (SST28) and found that four of them were able to detect above 70% of the fluorescent cells in the transgenic islets. This is quite efficient compared to the commercially available antibodies. Using one of these antibodies (SST10G5), we compared the cytoarchitecture of mouse and human pancreatic islets and found fewer δ-cells in the periphery of human islets. Interestingly, the δ-cell number was also reduced in islets from T2D donors compared to non-diabetic donors. Finally, with the aim to measure SST secretion from pancreatic islets, one of the candidate antibodies was used to develop a direct-ELISA-based SST assay. Using this novel assay, we could detect SST secretion under low and high glucose conditions from the pancreatic islets, both in mice and humans. Overall, using antibody-based tools provided by Mercodia AB, our study indicates reduced δ-cell numbers and SST secretion in diabetic islets.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Humans , Cell Count , Glucagon , Insulin , Somatostatin
8.
Mol Metab ; 69: 101675, 2023 03.
Article in English | MEDLINE | ID: mdl-36682412

ABSTRACT

OBJECTIVES: Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease that can range from hepatic steatosis to non-alcoholic steatohepatitis (NASH), which can lead to fibrosis and cirrhosis. Recently, ketogenic diet (KD), a low carbohydrate diet, gained popularity as a weight-loss approach, although it has been reported to induce hepatic insulin resistance and steatosis in animal model systems via an undefined mechanism. Herein, we investigated the KD metabolic benefits and its contribution to the pathogenesis of NASH. METHODS: Using metabolic, biochemical and omics approaches, we identified the effects of a KD on NASH and investigated the mechanisms by which KD induces hepatic insulin resistance and steatosis. RESULTS: We demonstrate that KD can induce fibrosis and NASH regardless of body weight loss compared to high-fat diet (HFD) fed mice at thermoneutrality. At ambient temperature (23 °C), KD-fed mice develop a severe hepatic injury, inflammation, and steatosis. In addition, KD increases liver cholesterol, IL-6, and p-JNK and aggravates diet induced-glucose intolerance and hepatic insulin resistance compared to HFD. Pharmacological inhibition of IL-6 and JNK reverses KD-induced glucose intolerance, and hepatic steatosis and restores insulin sensitivity. CONCLUSIONS: Our studies uncover a new mechanism for KD-induced hepatic insulin resistance and NASH potentially via IL-6-JNK signaling and provide a new NASH mouse model.


Subject(s)
Glucose Intolerance , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Glucose Intolerance/etiology , Interleukin-6 , Diet, High-Fat , Diet, Carbohydrate-Restricted
9.
Chemistry ; 29(25): e202203038, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36625067

ABSTRACT

Mn(I) C-H functionalization of coumarins provides a versatile and practical method for the rapid assembly of fused polycyclic pyridinium-containing coumarins in a regioselective manner. The synthetic strategy enables application of bench-stable organomanganese reagents in both photochemical- and thermal-promoted reactions. The cyclomanganated intermediates, and global reaction system, provide an ideal testing ground for structural characterization of the active Mn(I) carbonyl-containing species, including transient species observable by ultra-fast time-resolved spectroscopic methods. The thermodynamic reductive elimination product, solely encountered from reaction between alkynes and air-stable organometallic cyclomanganated coumarins, has enabled characterization of a critical seven-membered Mn(I) intermediate, detected by time-resolved infrared spectroscopy, enabling the elucidation of the temporal profile of key steps in the reductive elimination pathway. Quantitative data are provided. Manganated polycyclic products are readily decomplexed by AgBF4 , opening-up an efficient route to the formation of π-extended hybrid coumarin-pyridinium compounds.

10.
Diabetes Obes Metab ; 25(3): 856-877, 2023 03.
Article in English | MEDLINE | ID: mdl-36495318

ABSTRACT

OBJECTIVES: Oxytocin (OT) has a well-established role in reproductive behaviours; however, it recently emerged as an important regulator of energy homeostasis. In addition to central nervous system (CNS), OT is found in the plasma and OT receptors (OT-R) are found in peripheral tissues relevant to energy balance regulation. Here, we aim to determine whether peripheral OT-R activation is sufficient to alter energy intake and expenditure. METHODS AND RESULTS: We first show that systemic OT potently reduced food intake and food-motivated behaviour for a high-fat reward in male and female rats. As it is plausible that peripherally, intraperitoneally (IP) injected OT crosses the blood-brain barrier (BBB) to produce some of the metabolic effects within the CNS, we screened, with a novel fluorescently labelled-OT (fAF546-OT, Roxy), for the presence of IP-injected Roxy in CNS tissue relevant to feeding control and compared such with BBB-impermeable fluorescent OT-B12 (fCy5-OT-B12; BRoxy). While Roxy did penetrate the CNS, BRoxy did not. To evaluate the behavioural and thermoregulatory impact of exclusive activation of peripheral OT-R, we generated a novel BBB-impermeable OT (OT-B12 ), with equipotent binding at OT-R in vitro. In vivo, IP-injected OT and OT-B12 were equipotent at food intake suppression in rats of both sexes, suggesting that peripheral OT acts on peripheral OT-R to reduce feeding behaviour. Importantly, OT induced a potent conditioned taste avoidance, indistinguishable from that induced by LiCl, when applied peripherally. Remarkably, and in contrast to OT, OT-B12 did not induce any conditioned taste avoidance. Limiting the CNS entry of OT also resulted in a dose-dependent reduction of emesis in male shrews. While both OT and OT-B12 proved to have similar effects on body temperature, only OT resulted in home-cage locomotor depression. CONCLUSIONS: Together our data indicate that limiting systemic OT CNS penetrance preserves the anorexic effects of the peptide and reduces the clinically undesired side effects of OT: emesis, taste avoidance and locomotor depression. Thus, therapeutic targeting of peripheral OT-R may be a viable strategy to achieve appetite suppression with better patient outcomes.


Subject(s)
Eating , Oxytocin , Rats , Male , Female , Animals , Oxytocin/pharmacology , Motivation , Taste , Central Nervous System , Vomiting
11.
Mol Metab ; 66: 101631, 2022 12.
Article in English | MEDLINE | ID: mdl-36368622

ABSTRACT

OBJECTIVE: The glucagon gene (Gcg) encodes preproglucagon, which is cleaved to form glucagon-like peptide 1 (GLP1) and other mature signaling molecules implicated in metabolic functions. To date there are no transgenic rat models available for precise manipulation of GLP1-expressing cells in the brain and periphery. METHODS: To visualize and manipulate Gcg-expressing cells in rats, CRISPR/Cas9 was used to express iCre under control of the Gcg promoter. Gcg-Cre rats were bred with tdTomato reporter rats to tag Gcg-expressing cells. Cre-dependent AAVs and RNAscope in situ hybridization were used to evaluate the specificity of iCre expression by GLP1 neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt), and by intestinal and pancreatic secretory cells. Food intake was assessed in heterozygous (Het) Gcg-Cre rats after chemogenetic stimulation of cNTS GLP1 neurons expressing an excitatory DREADD. RESULTS: While genotype has minimal effect on body weight or composition in chow-fed Gcg-Cre rats, homozygous (Homo) rats have lower plasma glucose levels. In neonatal and adult Gcg-Cre/tdTom rats, reporter-labeled cells are present in the cNTS and IRt, and in additional brain regions (e.g., basolateral amygdala, piriform cortex) that lack detectable Gcg mRNA in adults but display transient developmental or persistently low Gcg expression. Compared to wildtype (WT) rats, hindbrain Gcg mRNA and GLP1 protein in brain and plasma are markedly reduced in Homo Gcg-Cre rats. Chemogenetic stimulation of cNTS GLP1 neurons reduced overnight chow intake in males but not females, the effect in males was blocked by antagonism of central GLP1 receptors, and hypophagia was enhanced when combined with a subthreshold dose of cholecystokinin-8 to stimulate gastrointestinal vagal afferents. CONCLUSIONS: Gcg-Cre rats are a novel and valuable experimental tool for analyzing the development, anatomy, and function of Gcg-expressing cells in the brain and periphery. In addition, Homo Gcg-Cre rats are a unique model for assessing the role of Gcg-encoded proteins in glucose homeostasis and energy metabolism.


Subject(s)
Glucagon-Secreting Cells , Glucagon , Male , Animals , Rats , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Solitary Nucleus/metabolism , RNA, Messenger/metabolism
12.
Biol Psychiatry ; 92(9): 709-721, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35965105

ABSTRACT

BACKGROUND: Anxiety disorders are associated with an altered perception of the body's internal state. Therefore, understanding the neuronal basis of interoception can foster novel anxiety therapies. In rodents, the feeding status bidirectionally modulates anxiety-like behavior but how the sensing of gastrointestinal state affects anxiety remains unclear. METHODS: We combined chemogenetics, neuropharmacology, and behavioral approaches in male and female rats to test whether vagal afferents terminating in the gastrointestinal tract mediate feeding-induced tuning of anxiety. Using saporin-based lesions and transcriptomics, we investigated the chronic impact of this gut-brain circuit on anxiety-like behavior. RESULTS: Both feeding and selective chemogenetic activation of gut-innervating vagal afferents increased anxiety-like behavior. Conversely, chemogenetic inhibition blocked the increase in anxiety-like behavior induced by feeding. Using a selective saporin-based lesion, we demonstrate that the loss of gut-innervating vagal afferent signaling chronically reduces anxiety-like behavior in male rats but not in female rats. We next identify a vagal circuit that connects the gut to the central nucleus of the amygdala, using anterograde transsynaptic tracing from the nodose ganglia. Lesion of this gut-brain vagal circuit modulated the central amygdala transcriptome in both sexes but selectively affected a network of GABA (gamma-aminobutyric acid)-related genes only in males, suggesting a potentiation of inhibitory control. Blocking GABAergic signaling in the central amygdala re-established normal anxiety levels in male rats. CONCLUSIONS: Vagal sensory signals from the gastrointestinal tract are critical for baseline and feeding-induced tuning of anxiety via the central amygdala in rats. Our results suggest vagal gut-brain signaling as a target to normalize interoception in anxiety disorders.


Subject(s)
Anxiety , Vagus Nerve , Animals , Feedback , Female , Gastrointestinal Tract , Male , Neural Pathways/physiology , Rats , Saporins/metabolism , Vagus Nerve/metabolism , gamma-Aminobutyric Acid/metabolism
13.
Front Endocrinol (Lausanne) ; 13: 901669, 2022.
Article in English | MEDLINE | ID: mdl-35784535

ABSTRACT

Ghrelin, a stomach-produced hormone, is well-recognized for its role in promoting feeding, controlling energy homeostasis, and glucoregulation. Ghrelin's function to ensure survival extends beyond that: its release parallels that of corticosterone, and ghrelin administration and fasting have an anxiolytic and antidepressant effect. This clearly suggests a role in stress and anxiety. However, most studies of ghrelin's effects on anxiety have been conducted exclusively on male rodents. Here, we hypothesize that female rats are wired for higher ghrelin sensitivity compared to males. To test this, we systematically compared components of the ghrelin axis between male and female Sprague Dawley rats. Next, we evaluated whether anxiety-like behavior and feeding response to endogenous or exogenous ghrelin are sex divergent. In line with our hypothesis, we show that female rats have higher serum levels of ghrelin and lower levels of the endogenous antagonist LEAP-2, compared to males. Furthermore, circulating ghrelin levels were partly dependent on estradiol; ovariectomy drastically reduced circulating ghrelin levels, which were partly restored by estradiol replacement. In contrast, orchiectomy did not affect circulating plasma ghrelin. Additionally, females expressed higher levels of the endogenous ghrelin receptor GHSR1A in brain areas involved in feeding and anxiety: the lateral hypothalamus, hippocampus, and amygdala. Moreover, overnight fasting increased GHSR1A expression in the amygdala of females, but not males. To evaluate the behavioral consequences of these molecular differences, male and female rats were tested in the elevated plus maze (EPM), open field (OF), and acoustic startle response (ASR) after three complementary ghrelin manipulations: increased endogenous ghrelin levels through overnight fasting, systemic administration of ghrelin, or blockade of fasting-induced ghrelin signaling with a GHSR1A antagonist. Here, females exhibited a stronger anxiolytic response to fasting and ghrelin in the ASR, in line with our findings of sex differences in the ghrelin axis. Most importantly, after GHSR1A antagonist treatment, females but not males displayed an anxiogenic response in the ASR, and a more pronounced anxiogenesis in the EPM and OF compared to males. Collectively, female rats are wired for higher sensitivity to fasting-induced anxiolytic ghrelin signaling. Further, the sex differences in the ghrelin axis are modulated, at least partly, by gonadal steroids, specifically estradiol. Overall, ghrelin plays a more prominent role in the regulation of anxiety-like behavior of female rats.


Subject(s)
Anti-Anxiety Agents , Ghrelin , Animals , Estradiol , Female , Male , Rats , Rats, Sprague-Dawley , Reflex, Startle , Sex Characteristics , Stomach
14.
Psychoneuroendocrinology ; 141: 105733, 2022 07.
Article in English | MEDLINE | ID: mdl-35367714

ABSTRACT

Women are more likely to develop an anxiety disorder than men. Yet, preclinical models of anxiety were largely developed in male rodents, with poorly understood predictive validity for sex differences. Here, we investigate whether commonly-used anxiety-like behavior tests, elevated plus maze (EPM) and open field (OF), represent the human sex difference in adult Sprague-Dawley rats. When interpreted by EPM or OF, female rats displayed less anxiety-like behavior compared to males, as they spent twice as much time in the open arms of the EPM or the center of the OF compared to males. However, they also displayed vastly different levels of locomotor activity, possibly confounding interpretation of these locomotion-dependent tests. To exclude locomotion from the assessment, the acoustic startle response (ASR) test was used. When interpreted by the ASR test, females displayed more anxiety-like behavior compared to males, as indicated by a nearly two-fold higher startle amplitude. The observed sex differences were not driven by gonadal steroids. Overall, all but one of the tests fail to mirror the sex difference in anxiety reported in humans. Our findings suggest that the ASR might be a better fit in modelling female anxiety-like behavior.


Subject(s)
Reflex, Startle , Sex Characteristics , Animals , Anxiety , Behavior, Animal , Female , Humans , Male , Rats , Rats, Sprague-Dawley , Rodentia
15.
Front Nutr ; 9: 828522, 2022.
Article in English | MEDLINE | ID: mdl-35284452

ABSTRACT

Prevalence and health consequences of obesity differ between men and women. Yet, most preclinical studies investigating the etiology of obesity have, to date, been conducted in male rodents. Notably, diet is a major determinant of obesity, but sex differences in rodent models of diet-induced obesity, and the mechanisms that underlie such differences, are still understudied. Here, we aim to determine whether time course and characteristics of diet-induced obesity differ between sexes in rats and mice, and to investigate the potential causes of the observed divergence. To achieve this, we offered the most commonly tested rodents of both sexes, SD rats and C57BL/6 mice, a free choice of 60 % high-fat diet (HFD) and regular chow; body weight, food intake, fat mass, brown adipose responses, locomotor activity and glucose tolerance were assessed in a similar manner in both species. Our results indicate that overall diet-induced hyperphagia is greater in males but that females display a higher preference for the HFD, irrespective of species. Female rats, compared to males, showed a delay in diet-induced weight gain and less metabolic complications. Although male rats increased brown adipose tissue thermogenesis in response to the HFD challenge, this was not sufficient to counteract increased adiposity. In contrast to rats, female and male mice presented with a dramatic adiposity and impaired glucose tolerance, and a decreased energy expenditure. Female mice showed a 5-fold increase in visceral fat, compared to 2-fold increase seen in male mice. Overall, we found that male and female rodents responded very differently to HFD challenge, and engaged different compensatory energy expenditure mechanisms. In addition, these sex differences are divergent in rats and mice. We conclude that SD rats have a better face validity for the lower prevalence of overweight in women, while C57BL/6 mice may better model the increased prevalence of morbid obesity in women.

16.
Br J Nutr ; 127(7): 1037-1049, 2022 04 14.
Article in English | MEDLINE | ID: mdl-33971997

ABSTRACT

We investigated the associations between dietary patterns and chronic disease mortality in Switzerland using an ecological design and explored their spatial dependence, i.e. the tendency of near locations to present more similar and distant locations to present more different values than randomly expected. Data of the National Nutrition Survey menuCH (n 2057) were used to compute hypothesis- (Alternate Healthy Eating Index (AHEI)) and data-driven dietary patterns. District-level standardised mortality ratios (SMR) were calculated using the Swiss Federal Statistical Office mortality data and linked to dietary data geographically. Quasipoisson regression models were fitted to investigate the associations between dietary patterns and chronic disease mortality; Moran's I statistics were used to explore spatial dependence. Compared with the first, the fifth AHEI quintile (highest diet quality) was associated with district-level SMR of 0·95 (95 % CI 0·93, 0·97) for CVD, 0·91 (95 % CI 0·88, 0·95) for ischaemic heart disease (IHD), 0·97 (95 % CI 0·95, 0·99) for stroke, 0·99 (95 % CI 0·98, 1·00) for all-cancer, 0·98 (95 % CI 0·96, 0·99) for colorectal cancer and 0·93 (95 % CI 0·89, 0·96) for diabetes. The Swiss traditional and Western-like patterns were associated with significantly higher district-level SMR for CVD, IHD, stroke and diabetes (ranging from 1·02 to 1·08) compared with the Prudent pattern. Significant global and local spatial dependence was identified, with similar results across hypothesis- and data-driven dietary patterns. Our study suggests that dietary patterns partly contribute to the explanation of geographic disparities in chronic disease mortality in Switzerland. Further analyses including spatial components in regression models would allow identifying regions where nutritional interventions are particularly needed.


Subject(s)
Cardiovascular Diseases , Stroke , Chronic Disease , Diet , Humans , Switzerland/epidemiology
17.
Peptides ; 140: 170534, 2021 06.
Article in English | MEDLINE | ID: mdl-33757831

ABSTRACT

Cocaine- and amphetamine-related transcript (CART) is a neuropeptide first discovered in the striatum of the rat brain. Later, the genetic sequence and function of CART peptide (CARTp) was found to be conserved among multiple mammalian species. Over the 25 years, since its discovery, CART mRNA (Cartpt) expression has been reported widely throughout the central and peripheral nervous systems underscoring its role in diverse physiological functions. Here, we review the localization and function of CARTp as it relates to energy homeostasis. We summarize the expression changes of central and peripheral Cartpt in response to metabolic states and make use of available large data sets to gain additional insights into the anatomy of the Cartpt expressing vagal neurons and their expression patterns in the gut. Furthermore, we provide an overview of the role of CARTp as an anorexigenic signal and its effect on energy expenditure and body weight control with insights from both pharmacological and transgenic animal studies. Subsequently, we discuss the role of CARTp in the pathophysiology of obesity and review important new developments towards identifying a candidate receptor for CARTp signalling. Altogether, the field of CARTp research has made rapid and substantial progress recently, and we review the case for considering CARTp as a potential therapeutic target for stemming the obesity epidemic.


Subject(s)
Nerve Tissue Proteins/metabolism , Neurons/metabolism , Peptides/metabolism , Vagus Nerve/metabolism , Animals , Energy Metabolism , Homeostasis , Humans
18.
Public Health Nutr ; 24(13): 4156-4165, 2021 09.
Article in English | MEDLINE | ID: mdl-32893771

ABSTRACT

OBJECTIVE: To describe and analyse the sociodemographic, anthropometric, behavioural and dietary characteristics of different types of Swiss (no-)meat eaters. DESIGN: No-, low-, medium- and high-meat eaters were compared with respect to energy and total protein intake and sociodemographic, anthropometric and behavioural characteristics. SETTING: National Nutrition Survey menuCH, the first representative survey in Switzerland. PARTICIPANTS: 2057 participants, aged 18-75 years old, who completed two 24-h dietary recalls (24-HDR) and a questionnaire on dietary habits, sociodemographic and lifestyle factors. Body weight and height were measured by trained interviewers. No-meat eaters were participants who reported meat avoidance in the questionnaire and did not report any meat consumption in the 24-HDR. Remaining study participants were assigned to the group of low-, medium- or high-meat eaters based on energy contributions of total meat intake to total energy intake (meat:energy ratio). Fifteen percentage of the participants were assigned to the low- and high-meat eating groups, and the remaining to the medium-meat eating group. RESULTS: Overall, 4·4 % of the study participants did not consume meat. Compared with medium-meat eaters, no-meat eaters were more likely to be single and users of dietary supplements. Women and high-educated individuals were less likely to be high-meat eaters, whereas overweight and obese individuals were more likely to be high-meat eaters. Total energy intake was similar between the four different meat consumption groups, but no-meat eaters had lowest total protein intake. CONCLUSIONS: This study identified important differences in sociodemographic, anthropometric, behavioural and dietary factors between menuCH participants with different meat-eating habits.


Subject(s)
Diet, Vegetarian , Meat , Adolescent , Adult , Aged , Dietary Supplements , Female , Humans , Middle Aged , Nutrition Surveys , Obesity/epidemiology , Switzerland , Young Adult
19.
Chemistry ; 27(12): 3979-3985, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33135818

ABSTRACT

Manganese-mediated borylation of aryl/heteroaryl diazonium salts emerges as a general and versatile synthetic methodology for the synthesis of the corresponding boronate esters. The reaction proved an ideal testing ground for delineating the Mn species responsible for the photochemical reaction processes, that is, involving either Mn radical or Mn cationic species, which is dependent on the presence of a suitably strong oxidant. Our findings are important for a plethora of processes employing Mn-containing carbonyl species as initiators and/or catalysts, which have considerable potential in synthetic applications.

20.
Eur J Nutr ; 60(5): 2331-2341, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33125578

ABSTRACT

PURPOSE: Diet is one of the most important modifiable risk factors for the development of type 2 diabetes. Here, we aim to identify dietary patterns and to investigate their association with prediabetes, undetected diabetes and prevalent diabetes. METHODS: The present study included 1305 participants of the cross-sectional population-based KORA FF4 study. Oral glucose tolerance test (OGTT) measurements together with a physician-confirmed diagnosis allowed for an accurate categorization of the participants according to their glucose tolerance status into normal glucose tolerance (n = 698), prediabetes (n = 459), undetected diabetes (n = 49), and prevalent diabetes (n = 99). Dietary patterns were identified through principal component analysis followed by hierarchical clustering. The association between dietary patterns and glucose tolerance status was investigated using multinomial logistic regression models. RESULTS: A Prudent pattern, characterized by high consumption of vegetables, fruits, wholegrains and dairy products, and a Western pattern, characterized by high consumption of red and processed meat, alcoholic beverages, refined grains and sugar-sweetened beverages, were identified. Participants following the Western pattern had significantly higher chances of having prediabetes (odds ratio [OR] 1.92; 95% confidence interval [CI] 1.35, 2.73), undetected diabetes (OR 10.12; 95% CI 4.19, 24.43) or prevalent diabetes (OR 3.51; 95% CI 1.85, 6.67), compared to participants following the Prudent pattern. CONCLUSION: To our knowledge, the present study is one of the few investigating the association between dietary patterns and prediabetes or undetected diabetes. The use of a reference group exclusively including participants with normal glucose tolerance might explain the strong associations observed in our study. These results suggest a very important role of dietary habits in the prevention of prediabetes and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Cross-Sectional Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diet , Feeding Behavior , Humans , Prediabetic State/diagnosis , Prediabetic State/epidemiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...