Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Arch Psychiatry Clin Neurosci ; 274(1): 87-96, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37710135

ABSTRACT

Specialized psychotherapeutic treatments like dialectical behavioral therapy (DBT) are recommended as first treatment for borderline personality disorder (BPD). In recent years, studies have emerged that focus on repetitive transcranial magnetic stimulation (rTMS) in BPD. Both have independently demonstrated efficacy in the treatment of BPD. Intermitted theta burst stimulation (iTBS), a modified design of rTMS, is thought to increase the excitability of neurons and could be a supplement to psychotherapy in addition to being a standalone treatment. However, no studies to date have investigated the combination of DBT and rTMS/iTBS. This study protocol describes the methods and design of a randomized, single-blinded, sham-controlled clinical pilot study in which BPD patients will be randomly assigned to either iTBS or sham during four consecutive weeks (20 sessions in total) in addition to standardized DBT treatment. The stimulation will focus on the unilateral stimulation of the left dorsolateral prefrontal cortex (DLPFC), which plays an important role in the control of impulsivity and risk-taking. Primary outcome is the difference in borderline symptomatology, while secondary target criteria are depressive symptoms, general functional level, impulsivity and self-compassion. Statistical analysis of therapy response will be conducted by Mixed Model Repeated Measurement using a 2 × 2-factorial between-subjects design with the between-subject factor stimulation (TMS vs. Sham) and the within-subject factor time (T0 vs. T1). Furthermore, structural magnetic resonance imaging (MRI) will be conducted and analyzed. The study will provide evidence and insight on whether iTBS has an enhancing effect as add-on to DBT in BPD.Trial registration: drks.de (DRKS00020413) registered 13/01/2020.


Subject(s)
Borderline Personality Disorder , Transcranial Magnetic Stimulation , Humans , Behavior Therapy , Borderline Personality Disorder/therapy , Personality , Pilot Projects , Prefrontal Cortex/physiology , Single-Blind Method , Transcranial Magnetic Stimulation/methods , Treatment Outcome , Randomized Controlled Trials as Topic
2.
Toxicol Lett ; 293: 2-8, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-28916288

ABSTRACT

Skin affections after sulfur mustard (SM) exposure include erythema, blister formation and severe inflammation. An antidote or specific therapy does not exist. Anti-inflammatory compounds as well as substances counteracting SM-induced cell death are under investigation. In this study, we investigated the benzylisoquinoline alkaloide berberine (BER), a metabolite in plants like berberis vulgaris, which is used as herbal pharmaceutical in Asian countries, against SM toxicity using a well-established in vitro approach. Keratinocyte (HaCaT) mono-cultures (MoC) or HaCaT/THP-1 co-cultures (CoC) were challenged with 100, 200 or 300mM SM for 1h. Post-exposure, both MoC and CoC were treated with 10, 30 or 50µM BER for 24h. At that time, supernatants were collected and analyzed both for interleukine (IL) 6 and 8 levels and for content of adenylate-kinase (AK) as surrogate marker for cell necrosis. Cells were lysed and nucleosome formation as marker for late apoptosis was assessed. In parallel, AK in cells was determined for normalization purposes. BER treatment did not influence necrosis, but significantly decreased apoptosis. Anti-inflammatory effects were moderate, but also significant, primarily in CoC. Overall, BER has protective effects against SM toxicity in vitro. Whether this holds true should be evaluated in future in vivo studies.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antidotes/pharmacology , Apoptosis/drug effects , Berberine/pharmacology , Chemical Warfare Agents/toxicity , Keratinocytes/drug effects , Mustard Gas/toxicity , Adenylate Kinase/metabolism , Cell Line , Cells, Cultured , Coculture Techniques , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Keratinocytes/pathology , Necrosis
3.
Stem Cell Res ; 6(1): 60-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20933485

ABSTRACT

Unrestricted somatic stem cells (USSC) from human cord blood display a broad differentiation potential for ectodermal, mesodermal, and endodermal cell types. The molecular basis for these stem cell properties is unclear and unlike embryonic stem cells (ESC) none of the major stem cell factors OCT4, SOX2, and NANOG exhibits significant expression in USSC. Here, we report that these key stem cell genes hold an epigenetic state in between that of an ESC and a terminally differentiated cell type. DNA methylation analysis exhibits partial demethylation of the regulatory region of OCT4 and a demethylated state of the NANOG and SOX2 promoter/enhancer regions. Further genome-wide DNA methylation profiling identified a partially demethylated state of the telomerase gene hTERT. Moreover, none of the pluripotency factors exhibited a repressive histone signature. Notably, SOX2 exhibits a bivalent histone signature consisting of the opposing histone marks dimeH3K4 and trimeH3K27, which is typically found on genes that are "poised" for transcription. Consequently, ectopic expression of OCT4 in USSC led to rapid induction of expression of its known target gene SOX2. Our data suggest that incomplete epigenetic repression and a "poised" epigenetic status of pluripotency genes preserves the USSC potential to be able to react adequately to distinct differentiation and reprogramming cues.


Subject(s)
Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Fetal Blood/cytology , Gene Expression Regulation, Developmental , Pluripotent Stem Cells/metabolism , Transcription Factors/genetics , Cell Differentiation , Cells, Cultured , DNA Methylation , Embryonic Stem Cells/cytology , Female , Fetal Blood/metabolism , Humans , Pluripotent Stem Cells/cytology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...