Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mutat Res ; 341(4): 303-18, 1995 Feb.
Article in English | MEDLINE | ID: mdl-7531289

ABSTRACT

The edible parts of 13 fruits--apples, apricots, bananas, blackberries, sweet cherries, red currants, white grapes, oranges, peaches, pears, plums, raspberries, and strawberries--and of 12 vegetables--asparagus, green beans, broccoli, brussels sprouts, red and white cabbage, carrots, cauliflower, onions, green peppers, spinach, and tomatoes--were squeezed in order to separate juices and residues. The residues were washed, lyophilized, and extracted sequentially with n-hexane, dichloromethane, acetone, and 2-propanol. Solvent extracted materials were tested in Salmonella typhymurium TA 98 for antimutagenicity against IQ and MeIQx. We found antimutagenic activities in 96% of the n-hexane extracts, 64% of the dichloromethane extracts, 44% of the acetone extracts, and 36% of the 2-propanol extracts. Since no or only minor differences were seen between the mutagens IQ and MeIQx investigations were continued with IQ only. Additional antimutagenic activities were detected in a total of 29.6% of extracts tested when an enzyme preparation with glycosidase-activities (fecalase) was included in the assay. These activities were found in originally inactive or less active dichloromethane, acetone, and 2-propanol extracts, and are therefore strongly suggestive for the liberation of antimutagenic aglycones from inactive glycosides. The existence of possibly a multitude of antimutagenic factors in fruits and vegetables was further substantiated by: (1) solvent partitioning of the n-hexane extracts of cauliflower, peaches, and spinach; (2) separation of the n-hexane and dichloromethane extracts of cauliflower, peaches, and spinach into acidid, neutral, and basic compounds; (3) chromatographic analysis of the n-hexane and dichloromethane extracts of spinach. Taken together, antimutagenic activities were present in 32 of 36 subfractions, corresponding to 88.9%. In the green vegetables beans, broccoli, and spinach the known antimutagen chlorophyll was proven to contribute considerably to antimutagenic potency. Other important contributions may be caused by various fibers: (I) antimutagenicity of fruit and vegetable solvent extracts was extensively heat stable; (II) heating surprisingly caused an increase of antimutagenic potencies or generated new antimutagenic activities in several solvent fractions, especially of broccoli, white and red cabbage. Indeed, mutagenicity induced by IQ was strongly reduced by lignin, weakly by alginic acid and pectin A, while cellulose, gum arabic, gum guar, and xylan were ineffective. With respect to the mechanisms of antimutagenicity binding of IQ by various fibers and inhibition of cytochrome P-450-dependent monooxygenases might be of major importance since no solvent fraction of any fruit or vegetable was able to reduce mutagenic activity induced by N-OH-IQ in S. typhimurium TA 98NR.


Subject(s)
Antimutagenic Agents/pharmacology , Mutagens/toxicity , Plant Extracts/pharmacology , Quinolines/toxicity , Chlorophyll/pharmacology , Dose-Response Relationship, Drug , Fruit/chemistry , Mutagenicity Tests , Polysaccharides/pharmacology , Quinolines/antagonists & inhibitors , Salmonella typhimurium/genetics , Solvents , Species Specificity , Vegetables/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...