Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 92(4): 1451-61, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24663166

ABSTRACT

The relationship between heat stress, meat quality, and residual feed intake (RFI) is unknown in growing steers. To address this issue, high RFI (HRFI) and low RFI (LRFI) individuals were compared by assessing RFI in 48 Angus-sired steers during a 70-d feeding trial conducted during July through September to identify steers with calculated RFI at least 2 SD apart. The association of RFI with indices of meat quality and expression of genes within hypothalamic and adipose tissue was then determined in LRFI and HRFI steers. While on test, feed intake was recorded daily with BW and hip heights recorded every 14 d. Ultrasound measurements of rib eye area (REA) and backfat (BF) were recorded initially and before harvest. Carcass and growth data were analyzed using a mixed model with RFI level (LRFI and HRFI) as the independent variable. The least square means for RFI were -1.2 and 0.99 kg DMI/d, respectively, for the LRFI and HRFI cohorts (P < 0.0001). Dry matter intake was higher for the HRFI individuals versus the LRFI steers (P < 0.0001) while on-test gain was not different (P < 0.95). Marbling score was greater in LRFI than HRFI steers (P < 0.05). However, there were no differences in REA (P < 0.53), BF (P < 0.65), yield grade (P < 0.24), or objective Hunter color measures between LRFI and HRFI steers indicating there was no consistent relationship between RFI and indices of meat quality. Hypothalamic neuropeptide Y (NPY), agouti related protein (AGRP), relaxin-3 (RLN3), melanocortin 3 receptor, and relaxin/insulin-like family peptide receptor 1 (RXFP1) mRNA were expressed 280, 185, 202, 183, and 163% greater, respectively (P < 0.01), while proopiomelanocortin (POMC) mRNA was expressed 42% lower in LRFI than HRFI animals (P < 0.05). Hypothalamic GnRH mRNA expression was 67% lower while gonadotropin inhibiting hormone (GnIH) mRNA was 209% higher in LRFI than HRFI animals (P < 0.01). Pituitary expression of FSHß and LHß correlated to hypothalamic GnRH levels (P < 0.05) indicating changes in gene expression within the hypothalamus had functional consequences. Leptin mRNA expression levels were not different between adipose tissue of LRFI or HRFI steers (P < 0.84). These data indicate that animals with superior RFI evaluated during warm conditions have higher expression of orexigenic neuropeptide genes independent of the expression of adipose-derived leptin. Furthermore, the gonadotropin axis may also influence feed efficiency under these conditions.


Subject(s)
Eating/physiology , Gene Expression Regulation/physiology , Hot Temperature , Hypothalamus/metabolism , Meat/standards , Seasons , Animals , Body Composition/genetics , Body Composition/physiology , Cattle , Eating/genetics , Male
2.
J Anim Sci ; 92(2): 549-60, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24398827

ABSTRACT

Mechanisms underlying variation in residual feed intake (RFI), a heritable feed efficiency measure, are poorly understood while the relationship between RFI and meat quality is uncertain. To address these issues, 2 divergent cohorts consisting of High (HRFI) and Low (LRFI) RFI individuals were created by assessing RFI in 48 Angus-sired steers during a 70 d feeding trial to identify steers with divergent RFI. The association of RFI with indices of meat quality and expression of genes within hypothalamic and adipose tissue was then determined in LRFI and HRFI steers. While on test, feed intake was recorded daily with BW and hip heights recorded at 14 d intervals. Ultrasound measurements of rib eye area (REA) and backfat (BF) were recorded initially and before harvest. Carcass and growth data were analyzed using a mixed model with RFI level (LRFI, HRFI) as the independent variable. The least-square means (lsmeans) for RFI were -1.25 and 1.51 for the LRFI and HRFI cohorts (P < .0001). Dry matter intake was higher for the HRFI individuals versus the LRFI steers (P < .0001) while on test BW gain was not different between the 2 groups (P < 0.73). There were no differences detected in marbling score (P < 0.93), BF (P < 0.61), REA (P < 0.15), yield grade (P < 0.85) or objective Hunter color measures between LRFI and HRFI steers indicating that there was no relationship between RFI and meat quality. Neuropeptide-Y (NPY), relaxin-3 (RLN3), melanocortin 4 receptor (MC4R), and GnRH mRNA expression was 64%, 59%, 58%, 86% lower (P < 0.05), respectively, while gonadotropin inhibiting hormone (GnIH) and pro-opiomelanocortin (POMC) mRNA expression was 198% and 350% higher (P < 0.01) in the arcuate nucleus of LRFI steers. Expression of agouti-related protein (AGRP), relaxin/insulin-like family peptide receptor 1 (RXFP1), and melanocortin 3 receptor mRNA was similar between LRFI and HRFI animals. Pituitary expression of FSHß (P < 0.03) and LHß (P < 0.01) was correlated to hypothalamic GnRH levels suggesting that changes in gene expression within the arcuate nucleus had functional consequences. Leptin mRNA expression was 245% higher in the adipose tissue of LRFI steers consistent with lower levels of NPY and higher expression of POMC in their hypothalami. These data support the hypothesis that differences in hypothalamic neuropeptide gene expression underlie variation in feed efficiency in steers while the gonadotropin axis may also influence feed efficiency.


Subject(s)
Cattle/genetics , Cattle/physiology , Eating/genetics , Gene Expression Regulation/physiology , Hypothalamus/physiology , Adipose Tissue , Animals , Body Composition , Body Weight , Eating/physiology , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Male , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Relaxin/genetics , Relaxin/metabolism
3.
J Anim Sci ; 91(6): 2616-27, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23482578

ABSTRACT

The ability to improve meat quality and production efficiency in cattle is limited by an inability to enhance marbling and simultaneously limit undesirable adipose tissue accretion. The objective of this study was to examine expression of regulatory genes in subcutaneous (SCF) adipose tissue of heifers in response to increasing days on feed (DOF) and finishing strategy. Crossbred heifers (n = 24) were allotted as follows: Group 1 = 0 d, Group 2 = 99 d on winter annual ryegrass (grass; Lolium multiflorum Lam.), Group 3 = 218 g on grass, Group 4 = 99 d on grass followed by 119 d on grain. Adipose tissue samples were collected at time of harvest and frozen. Carcass characteristics were measured 24 h postharvest. As expected, HCW (P < 0.0001), ribeye area (REA; P < 0.0002), backfat (BF; P < 0.0001), KPH (P < 0.0001), and marbling score (P < 0.0009) increased with DOF though frame score was not different (P < 0.95). Average daily gain decreased with DOF (P < 0.0001). Yield grade increased (P < 0.0014) but cook loss percentage decreased (P < 0.001) with DOF without changes in 24-h pH (P < 0.31). Interestingly, Warner-Bratzler shear force (WBS) was decreased with DOF (P < 0.0089). Meanwhile, BF (P < 0.01) and KPH (P < 0.05) were greater, whereas marbling values trended greater in grain versus grass-finished heifers. Neither ADG (P < 0.89), HCW (P < 0.26), frame score (P < 0.85), nor REA (P < 0.38) were different between these groups. Grain finishing increased yield grade (P < 0.001) but did not affect 24-h pH (P < 0.88), cook loss percentage (P < 0.98), or WBS (P < 0.44) compared with grass-finished heifers. The expression of PPARγ, bone morphogenic protein 2 (BMP2), and SMAD family member 1 (SMAD1) mRNA was upregulated in response to DOF and grain finishing, whereas sterol regulatory element binding protein 1c (SREBP-1c), sonic hedgehog (SHH), chicken ovalbumin protein transcription factor 1 (COUP-TF1), chicken ovalbumin protein transcription factor 2 (COUP-TF2), and preadipocyte factor-1 (PREF-1) mRNA was decreased in response to DOF and grain finishing. These changes were associated with increased expression of lipoprotein lipase (LPL), stearoyl-coenzyme A desaturase (SCD), and fatty acid synthase (FAS) mRNA. In summary, increasing DOF was associated with improved meat quality whereas gene expression studies suggest several novel genes are associated with subcutaneous adipose tissue development in growing and finishing cattle.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Gene Expression Regulation , Genes, Regulator , Meat/analysis , Subcutaneous Fat/metabolism , Transcription Factors/genetics , Alabama , Animals , Cattle/genetics , Cattle/growth & development , Diet , Edible Grain/chemistry , Female , Poaceae/chemistry , Random Allocation , Time Factors , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...