Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36992026

ABSTRACT

The Bedretto Underground Laboratory for Geosciences and Geoenergies (BULGG) allows the implementation of hectometer (>100 m) scale in situ experiments to study ambitious research questions. The first experiment on hectometer scale is the Bedretto Reservoir Project (BRP), which studies geothermal exploration. Compared with decameter scale experiments, the financial and organizational costs are significantly increased in hectometer scale experiments and the implementation of high-resolution monitoring comes with considerable risks. We discuss in detail risks for monitoring equipment in hectometer scale experiments and introduce the BRP monitoring network, a multi-component monitoring system combining sensors from seismology, applied geophysics, hydrology, and geomechanics. The multi-sensor network is installed inside long boreholes (up to 300 m length), drilled from the Bedretto tunnel. Boreholes are sealed with a purpose-made cementing system to reach (as far as possible) rock integrity within the experiment volume. The approach incorporates different sensor types, namely, piezoelectric accelerometers, in situ acoustic emission (AE) sensors, fiber-optic cables for distributed acoustic sensing (DAS), distributed strain sensing (DSS) and distributed temperature sensing (DTS), fiber Bragg grating (FBG) sensors, geophones, ultrasonic transmitters, and pore pressure sensors. The network was realized after intense technical development, including the development of the following key elements: rotatable centralizer with integrated cable clamp, multi-sensor in situ AE sensor chain, and cementable tube pore pressure sensor.

2.
Sci Rep ; 10(1): 6949, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32332786

ABSTRACT

Temporal changes in groundwater chemistry can reveal information about the evolution of flow path connectivity during crustal deformation. Here, we report transient helium and argon concentration anomalies monitored during a series of hydraulic reservoir stimulation experiments measured with an in situ gas equilibrium membrane inlet mass spectrometer. Geodetic and seismic analyses revealed that the applied stimulation treatments led to the formation of new fractures (hydraulic fracturing) and the reactivation of natural fractures (hydraulic shearing), both of which remobilized (He, Ar)-enriched fluids trapped in the rock mass. Our results demonstrate that integrating geochemical information with geodetic and seismic data provides critical insights to understanding dynamic changes in fracture network connectivity during reservoir stimulation. The results of this study also shed light on the linkages between fluid migration, rock deformation and seismicity at the decameter scale.

3.
Sci Data ; 5: 180269, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30480661

ABSTRACT

High-resolution 3D geological models are crucial for underground development projects and corresponding numerical simulations with applications in e.g., tunneling, hydrocarbon exploration, geothermal exploitation and mining. Most geological models are based on sparse geological data sampled pointwise or along lines (e.g., boreholes), leading to oversimplified model geometries. In the framework of a hydraulic stimulation experiment in crystalline rock at the Grimsel Test Site, we collected geological data in 15 boreholes using a variety of methods to characterize a decameter-scale rock volume. The experiment aims to identify and understand relevant thermo-hydro-mechanical-seismic coupled rock mass responses during high-pressure fluid injections. Prior to fluid injections, we characterized the rock mass using geological, hydraulic and geophysical prospecting. The combination of methods allowed for compilation of a deterministic 3D geological analog that includes five shear zones, fracture density information and fracture locations. The model may serve as a decameter-scale analog of crystalline basement rocks, which are often targeted for enhanced geothermal systems. In this contribution, we summarize the geological data and the resulting geological interpretation.

SELECTION OF CITATIONS
SEARCH DETAIL
...