Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Ecol ; 35(1): arad084, 2024.
Article in English | MEDLINE | ID: mdl-38193015

ABSTRACT

Mate guarding is typically considered a male strategy to protect paternity. However, under some circumstances, females might also benefit from guarding their mate. Female mate guarding might be particularly important in socially polyandrous species in which females compete for access to care-giving males. Because males also benefit from being near their partner to avoid paternity loss, pair members may have a mutual interest in mate guarding in polyandrous species. We studied the time spent together and movements that lead to separation, as behavioral measures of mate guarding, in the classically polyandrous red phalarope (Phalaropus fulicarius). We equipped 64 breeding pairs with miniaturized telemetry loggers with GPS to assess variation in mate-guarding intensity in relation to breeding phenology and season, nest attendance, and the occurrence of extrapair paternity. We show that red phalarope pairs were almost continuously together in the days before clutch initiation with no sex bias in separation movements, indicating mutual contribution to mate guarding. Our results suggest that in red phalaropes, both pair members guard their mate, with limited sexual conflict arising through biases in the operational sex ratio and a trade-off with male nest attendance. We found no clear relationship between mate-guarding intensity and the occurrence of extrapair paternity. In this non-territorial socially polyandrous species, mutual mate guarding might be the process underlying the evolution of a brief but strong social pair bond, with no other purpose than producing a clutch for a care-giving male.

2.
Evolution ; 77(12): 2590-2605, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-37757813

ABSTRACT

Gamete size variation between the sexes is central to the concept of sex roles, however, to what extent gamete size variation within the sexes relates to sex role variation remains unclear. Comparative and theoretical studies suggest that, when clutch size is invariable, polyandry is linked to a reduction of egg size, while increased female-female competition for mates favors early breeding when females cannot monopolize multiple males. To understand whether and how breeding phenology, egg size, and mating behavior are related at the individual level, we studied the reproductive histories of 424 snowy plover females observed in the wild over a 15-year period. Egg size, but not polyandry, were highly repeatable for individual females. Consistent with theoretical predictions, we found that polyandrous females were the earliest breeders and that early clutches contained smaller eggs than clutches initiated later. Neither egg size nor mating behavior showed clear signs of an age-related deterioration, on the contrary, prior experience acquired either through age or local recruitment enabled females to nest early. Taken together, these results suggest that gamete size variation is not linked to mating behavior at the individual level, and, consequently, the adaptive potential of such variation appears to be limited.


Subject(s)
Reproduction , Sexual Behavior, Animal , Male , Female , Animals , Clutch Size
3.
J Anim Ecol ; 92(8): 1639-1657, 2023 08.
Article in English | MEDLINE | ID: mdl-37230950

ABSTRACT

All animals host a microbial community within and on their reproductive organs, known as the reproductive microbiome. In free-living birds, studies on the sexual transmission of bacteria have typically focused on a few pathogens instead of the bacterial community as a whole, despite a potential link to reproductive function. Theory predicts higher sexual transmission of the reproductive microbiome in females via the males' ejaculates and higher rates of transmission in promiscuous systems. We studied the cloacal microbiome of breeding individuals of a socially polyandrous, sex-role-reversed shorebird, the red phalarope (Phalaropus fulicarius). We expected (i) higher microbial diversity in females compared to males; (ii) low compositional differentiation between sexes; (iii) lower variation in composition between individuals (i.e. microbiome dispersion) in females than in males; (iv) convergence in composition as the breeding season progresses as a consequence of sexual transmission and/or shared habitat use; and (v) higher similarity in microbial composition between social pair members than between two random opposite-sex individuals. We found no or small between-sex differences in cloacal microbiome diversity/richness and composition. Dispersion of predicted functional pathways was lower in females than in males. As predicted, microbiome dispersion decreased with sampling date relative to clutch initiation of the social pair. Microbiome composition was significantly more similar among social pair members than among two random opposite-sex individuals. Pair membership explained 21.5% of the variation in taxonomic composition and 10.1% of functional profiles, whereas temporal and sex effects explained only 0.6%-1.6%. Consistent with evidence of functional convergence of reproductive microbiomes within pairs, some select taxa and predicted functional pathways were less variable between social pair members than between random opposite-sex individuals. As predicted if sexual transmission of the reproductive microbiome is high, sex differences in microbiome composition were weak in a socially polyandrous system with frequent copulations. Moreover, high within-pair similarity in microbiome composition, particularly for a few taxa spanning the spectrum of the beneficial-pathogenic axis, demonstrates the link between mating behaviour and the reproductive microbiome. Our study is consistent with the hypothesis that sexual transmission plays an important role in driving reproductive microbiome ecology and evolution.


Subject(s)
Charadriiformes , Microbiota , Female , Male , Animals , Reproduction , Birds , Bacteria , Sexual Behavior, Animal
4.
Proc Biol Sci ; 287(1920): 20192789, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32075527

ABSTRACT

Nomadism is a behaviour where individuals respond to environmental variability with movements that seem unpredictable in timing and direction. In contrast to migration, the mechanisms underlying nomadic movements remain largely unknown. Here, we focus on a form of apparent nomadism in a polygynous shorebird, the pectoral sandpiper (Calidris melanotos). Local mating opportunities are unpredictable and most males sampled multiple sites across a considerable part of their breeding range. We test the hypothesis that individuals decided which part of the breeding range to sample in a given season based on the prevailing wind conditions. Using movement data from 80 males in combination with wind data from a global reanalysis model, we show that male pectoral sandpipers flew with wind support more often than expected by chance. Stronger wind support led to increased ground speed and was associated with a longer flight range. Long detours (loop-like flights) can be explained by individuals flying initially with the wind. Individuals did not fly westwards into the Russian Arctic without wind support, but occasionally flew eastwards into the North American Arctic against strong headwinds. Wind support might be less important for individuals flying eastwards, because their autumn migration journey will be shorter. Our study suggests that individuals of a species with low site fidelity choose their breeding site opportunistically based on the prevailing wind conditions.


Subject(s)
Animal Migration , Charadriiformes/physiology , Wind , Animals , Arctic Regions , Breeding , Flight, Animal , Marriage , Reproduction , Russia , Seasons , Sexual Behavior, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...