Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (156)2020 02 23.
Article in English | MEDLINE | ID: mdl-32150152

ABSTRACT

Here, we present a specially designed modular in vitro exposure system that enables the homogenous exposure of cultivated human lung cells at the ALI to gases, particles or complex atmospheres (e.g., cigarette smoke), thus providing realistic physiological exposure of the apical surface of the human alveolar region to air. In contrast to sequential exposure models with linear aerosol guidance, the modular design of the radial flow system meets all requirements for the continuous generation and transport of the test atmosphere to the cells, a homogenous distribution and deposition of the particles and the continuous removal of the atmosphere. This exposure method is primarily designed for the exposure of cells to airborne particles, but can be adapted to the exposure of liquid aerosols and highly toxic and aggressive gases depending on the aerosol generation method and the material of the exposure modules. Within the framework of a recently completed validation study, this exposure system was proven as a transferable, reproducible and predictive screening method for the qualitative assessment of the acute pulmonary cytotoxicity of airborne particles, thereby potentially reducing or replacing animal experiments that would normally provide this toxicological assessment.


Subject(s)
Air , Inhalation Exposure/adverse effects , Lung/cytology , Particulate Matter/toxicity , Gases/toxicity , Humans , Smoke/adverse effects
2.
Toxicol In Vitro ; 58: 245-255, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30890356

ABSTRACT

The CULTEX® Radial Flow System (RFS) is a modular in vitro system for the homogenous exposure of cells to airborne particles at the air-liquid interface (ALI). A former pre-validation study successfully demonstrated the general applicability of the CULTEX® RFS and its transferability, stability and reproducibility. Based on these results, the methodology was optimized, validated and prediction models for acute inhalation hazards were established. Cell viability of A549 cells after ALI exposure to 20 pre-selected test substances was assessed in three independent laboratories. Cytotoxicity of test substances was compared to the respective incubator controls and used as an indicator of toxicity. Substances were considered to exert an acute inhalation hazard when viability decreased below 50% (prediction model (PM) 50%) or 75% (PM 75%) at any of three exposure doses (25, 50 or 100 µg/cm2). Results were then compared to existing in vivo data and revealed an overall concordance of 85%, with a specificity of 83% and a sensitivity of 88%. Depending on the applied PM, the within-laboratory and between-laboratory reproducibility ranged from 90 to 100%. In summary, the CULTEX® RFS was proven as a transferable, reproducible and well predictive screening method for the qualitative assessment of the acute pulmonary cytotoxicity of airborne particles.


Subject(s)
Air Pollutants/toxicity , Cell Culture Techniques/methods , Particulate Matter/toxicity , A549 Cells , Cell Survival/drug effects , Humans , Inhalation Exposure , Reproducibility of Results
3.
Exp Toxicol Pathol ; 69(6): 359-365, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28262483

ABSTRACT

The exposure of cellular based systems cultivated on microporous membranes at the air-liquid interface (ALI) has been accepted as an appropriate approach to simulate the exposure of cells of the respiratory tract to native airborne substances. The efficiency of such an exposure procedure with regard to stability and reproducibility depends on the optimal design at the interface between the cellular test system and the exposure technique. The actual exposure systems favor the dynamic guidance of the airborne substances to the surface of the cells in specially designed exposure devices. Two module types, based on a linear or radial feed of the test atmosphere to the test system, were used for these studies. In our technical history, the development started with the linear designed version, the CULTEX® glass modules, fulfilling basic requirements for running ALI exposure studies (Mohr and Durst, 2005). The instability in the distribution of different atmospheres to the cells caused us to create a new exposure module, characterized by a stable and reproducible radial guidance of the aerosol to the cells. The outcome was the CULTEX® RFS (Mohr et al., 2010). In this study, we describe the differences between the two systems with regard to particle distribution and deposition clarifying the advantages and disadvantages of a radial to a linear aerosol distribution concept.


Subject(s)
Aerosols/toxicity , Cell Culture Techniques/methods , In Vitro Techniques/instrumentation , In Vitro Techniques/methods , Animals , Equipment Design , Humans , Inhalation Exposure
5.
Int J Environ Res Public Health ; 12(10): 12466-74, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26445056

ABSTRACT

The in vitro toxicological evaluation of e-liquid aerosol is an important aspect of consumer protection, but the cell model is of great significance. Due to its water solubility, e-liquid aerosol is deposited in the conducting zone of the respiratory tract. Therefore, primary normal human bronchial epithelial (NHBE) cells are more suitable for e-liquid aerosol testing than the widely used alveolar cell line A549. Due to their prolonged lifespan, immortalized cell lines derived from primary NHBE cells, exhibiting a comparable in vitro differentiation, might be an alternative for acute toxicity testing. In our study, A549 cells freshly isolated NHBE cells and the immortalized cell line CL-1548 were exposed at the air-liquid interface to e-liquid aerosol and cigarette mainstream smoke in a CULTEX(®) RFS compact module. The cell viability was analyzed 24 h post-exposure. In comparison with primary NHBE cells, the CL-1548 cell line showed lower sensitivity to e-liquid aerosol but significantly higher sensitivity compared to A549 cells. Therefore, the immortalized cell line CL-1548 is recommended as a tool for the routine testing of e-liquid aerosol and is preferable to A549 cells.


Subject(s)
Electronic Nicotine Delivery Systems/adverse effects , Nicotiana , Smoke/adverse effects , Toxicity Tests, Acute/methods , Aerosols , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Epithelial Cells/drug effects , Humans , Lung/cytology
6.
Int J Environ Res Public Health ; 12(4): 3915-25, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25856554

ABSTRACT

E-cigarettes are emerging products, often described as "reduced-risk" nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact  module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5-8 times lower and the oxidative stress levels 4.5-5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.


Subject(s)
Bronchi/drug effects , Electronic Nicotine Delivery Systems/adverse effects , Epithelial Cells/drug effects , Nicotine/adverse effects , Smoke/adverse effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...