Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 12(8): 1750-5, 2010 Feb 28.
Article in English | MEDLINE | ID: mdl-20145839

ABSTRACT

We report on the synthesis of copper nanoparticles in two different water- and air-stable ionic liquids using plasma electrochemical deposition. The copper nanoparticles were deposited in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py(1,4)]Tf(2)N) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIm]Tf(2)N). To get information on the dimensions of the particles made, we have applied in situ transmission electron microscopy (TEM) (particles in ionic liquid). The chemical composition was investigated by ex situ X-ray photoelectron spectroscopy (XPS). We found that the copper particles produced in [Py(1,4)]Tf(2)N were larger in size compared to the particles obtained in [EMIm] Tf(2)N (roughly 20 vs. 10 nm). The chemical composition of the particle surface differs too. In both cases the particles are partly oxidised leading to a CuO shell, but the particles obtained in [Py(1,4)]Tf(2)N carry a lot of residues from the ionic liquid.

2.
J Phys Chem B ; 111(18): 4801-6, 2007 May 10.
Article in English | MEDLINE | ID: mdl-17474703

ABSTRACT

The near-surface structure of the room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide has been investigated as a function of temperature between 100 and 620 K. We used a combination of photoelectron spectroscopies (XPS and UPS), metastable induced electron spectroscopy (MIES), and high-resolution electron energy loss spectroscopy (HREELS). The valence band and HREELS spectra are interpreted on the basis of density functional theory (DFT) calculations. At room temperature, the most pronounced structures in the HREELS, UPS, and MIES spectra are related to the CF3 group in the anion. Spectral changes observed at 100 K are interpreted as a change of the molecular orientation at the outermost surface, when the temperature is lowered. At elevated temperatures, early volatilization, starting at 350 K, is observed under reduced pressure.


Subject(s)
Imidazoles/chemistry , Ionic Liquids/chemistry , Microscopy, Electron/methods , Spectroscopy, Electron Energy-Loss/methods , Sulfonamides/chemistry , Temperature , Electrons , Sensitivity and Specificity , Spectrophotometry/methods , Surface Properties , Vibration , X-Rays
3.
Langmuir ; 22(17): 7120-3, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16893200

ABSTRACT

The near-surface electronic structure of the room-temperature ionic liquid (RT-IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf(2)N]) has been investigated with the combination of the electron spectroscopies metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS (HeI and HeII)), and monochromatized X-ray photoelectron spectroscopy (XPS). We find that the top of the valence band states originates from states of the cation (see also ref 1). The ultimately surface-sensitive technique MIES proves that the surface layer consists of both cations and anions. The temperature dependence of the spectra has been measured between about 160 and 610 K. Information on the glass transition and the possibility for low-temperature distillation of [EMIM][Tf(2)N] at reduced pressures is derived from the present results.

4.
J Chem Phys ; 120(11): 5407-13, 2004 Mar 15.
Article in English | MEDLINE | ID: mdl-15267414

ABSTRACT

Interfaces between films of benzenes (C(6)H(6);C(6)H(5)Cl;2-C(6)H(4)OHCl) and solid H(2)O on tungsten substrates were studied between 80 and 200 K with metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy [UPS(HeI and II)]. The following cases were studied in detail: (i) Adsorption of the benzenes on solid water in order to simulate their interaction with ice particles, and (ii) deposition of water on benzene films in order to simulate the process of water precipitation. In all cases the prepared interfacial layers were annealed up to 200 K under in situ control of MIES and UPS. The different behavior of the interfaces for the three studied cases is traced back to the different mobilities of the molecules with respect to that of water. The interaction between H(2)O and the benzenes at the interfaces is discussed on the basis of a qualitative profile for the free energy of that component of the interface which has the larger mobility. Possible implications of the present results for atmospheric physics are briefly mentioned.

SELECTION OF CITATIONS
SEARCH DETAIL
...