Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 22(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808450

ABSTRACT

In recent investigations of magnetoelectric sensors based on microelectromechanical cantilevers made of TiN/AlN/Ni, a complex eigenfrequency behavior arising from the anisotropic ΔE effect was demonstrated. Within this work, a FEM simulation model based on this material system is presented to allow an investigation of the vibrational properties of cantilever-based sensors derived from magnetocrystalline anisotropy while avoiding other anisotropic contributions. Using the magnetocrystalline ΔE effect, a magnetic hardening of Nickel is demonstrated for the (110) as well as the (111) orientation. The sensitivity is extracted from the field-dependent eigenfrequency curves. It is found, that the transitions of the individual magnetic domain states in the magnetization process are the dominant influencing factor on the sensitivity for all crystal orientations. It is shown, that Nickel layers in the sensor aligned along the medium or hard axis yield a higher sensitivity than layers along the easy axis. The peak sensitivity was determined to 41.3 T-1 for (110) in-plane-oriented Nickel at a magnetic bias flux of 1.78 mT. The results achieved by FEM simulations are compared to the results calculated by the Euler-Bernoulli theory.

2.
ACS Appl Mater Interfaces ; 12(51): 57526-57538, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33307677

ABSTRACT

Potentiostatic deposition of silicon is performed in sulfolane (SL) and ionic liquid (IL) electrolytes. Electrochemical quartz crystal microbalance with damping monitoring (EQCM-D) is used as main analytical tool for the characterization of the reduction process. The apparent molar mass (Mapp) is applied for in situ estimation of the layer contamination. By means of this approach, appropriate electrolyte composition and substrate type are selected to optimize the structural properties of the layers. The application of SL electrolyte results in silicon deposition with higher efficiency compared to the IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP][TFSI]. This has been associated with the instability of the IL in the presence of silicon tetrachloride and the enhanced incorporation of IL decomposition products into the growing silicon deposit. X-ray photoelectron spectroscopy (XPS) analysis supports the results about the layer composition, as suggested from the microgravimetric experiments. Attention has been given to the impact of practically relevant substrates (i.e., Cu, Ni, and vitreous carbon) on the reduction process. An effective deposition can be carried out on the metal electrodes in both electrolytes due to accelerated reaction kinetics for these types of substrates. However, on vitreous carbon (VC), a successful reduction of SiCl4 can only be accomplished in the IL, while the electroreduction process in SL is dominated by the decomposition of the electrolyte. For short deposition times, the scanning electron microscopy (SEM) images display rough morphologies in the nanometer range, which evolve further to structures with increased length scale of the surface roughness. The development of a rough interface during deposition, resulting in QCM damping at advanced stages of the process, is interpreted by a model accounting for the resistive force caused by the interaction of the liquid with a nonuniform layer interface. By using this approach, the individual contributions of the surface roughness and viscoelastic effects to the measured damping values are estimated.

3.
Sensors (Basel) ; 20(4)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32069884

ABSTRACT

Magnetoelectric sensors provide the ability to measure magnetic fields down to the pico tesla range and are currently the subject of intense research. Such sensors usually combine a piezoelectric and a magnetostrictive material, so that magnetically induced stresses can be measured electrically. Scandium aluminium nitride gained a lot of attraction in the last few years due to its enhanced piezoelectric properties. Its usage as resonantly driven microelectromechanical system (MEMS) in such sensors is accompanied by a manifold of influences from crystal growth leading to impacts on the electrical and mechanical parameters. Usual investigations via nanoindentation allow a fast determination of mechanical properties with the disadvantage of lacking the access to the anisotropy of specific properties. Such anisotropy effects are investigated in this work in terms of the Young's modulus and the strain on basis of a MEMS structures through a newly developed fully automated procedure of eigenfrequency fitting based on a new non-Lorentzian fit function and subsequent analysis using an extended Euler-Bernoulli theory. The introduced procedure is able to increase the resolution of the derived parameters compared to the common nanoindentation technique and hence allows detailed investigations of the behavior of magnetoelectric sensors, especially of the magnetic field dependent Young's modulus of the magnetostrictive layer.

4.
ACS Appl Mater Interfaces ; 11(30): 27073-27087, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31269791

ABSTRACT

Preparation of rectifying Schottky contacts on n-type oxide semiconductors, such as indium oxide (In2O3), is often challenged by the presence of a distinct surface electron accumulation layer. We investigated the material properties and electrical transport characteristics of platinum contact/indium oxide heterojunctions to define routines for the preparation of high-performance Schottky diodes on n-type oxide semiconductors. Combining the evaluation of different Pt deposition methods, such as electron-beam evaporation and (reactive) sputtering in an (O and) Ar atmosphere, with oxygen plasma interface treatments, we identify key parameters to obtain Schottky-type contacts with high electronic barrier height and high rectification ratio. Different photoelectron spectroscopy approaches are compared to characterize the chemical properties of the contact layers and the interface region toward In2O3, to analyze charge transfer and plasma oxidation processes as well as to evaluate the precision and limits of different methodologies to determine heterointerface energy barriers. An oxygen-plasma-induced passivation of the semiconductor surface, which induces electron depletion and generates an intrinsic interface energy barrier, is found to be not sufficient to generate rectifying platinum contacts. The dissolution of the functional interface oxide layer within the Pt film results in an energy barrier of ∼0.5 eV, which is too low for an In2O3 electron concentration of ∼1018 cm-3. A reactive sputter process in an Ar and O atmosphere is required to fabricate rectifying contacts that are composed of platinum oxide (PtOx). Combining oxygen plasma interface oxidation of the semiconductor surface with reactive sputtering of PtOx layers results in the generation of a high Schottky barrier of ∼0.9 eV and a rectification ratio of up to 106. An additional oxygen plasma treatment after contact deposition further reduced the reverse leakage current, likely by eliminating a surface conduction path between the coplanar Ohmic and Schottky contacts. We conclude that processes that allow us to increase the oxygen content in the interface and contact region are essential for fabrication of device-quality-rectifying contacts on various oxide semiconductors.

5.
Chemphyschem ; 20(5): 655-664, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30618192

ABSTRACT

Electrochemical quartz crystal microbalance (EQCM) with damping monitoring is applied for real-time analysis of solid-electrolyte interphase (SEI) formation in diphenyl octyl phosphate (DPOP) and vinylene carbonate (VC) modified electrolytes. Fast SEI formation is observed for the DPOP containing electrolyte, whereas slow growth is detected in VC-modified and reference electrolytes. QCM measurements in a dry state show considerable reduction of the mass quantity for DPOP and reference samples and minor mass decrease for the SEI layer formed in the presence of VC. The results indicate that VC enhances SEI stability, whereas the addition of DPOP or no additive results in incorporation of loosely attached species, leadubg to SEI instability. Resonance frequency damping, Δw, and dissipation factor, D, are used for analyzing mechanical properties of the SEI layers. The apparent increase of Δw and D during SEI formation in presence of DPOP suggests a pronounced viscoelasticity of the layer. QCM results are compared with surface morphology and chemical composition, revealing excellent agreement of the applied characterization approaches.

6.
ACS Appl Mater Interfaces ; 7(23): 12309-18, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-25531947

ABSTRACT

We studied structure and charge transport properties of thin films of donor-acceptor block copolymers, poly(3-hexylthiophene-block-perylene bisimide acrylate), using a combination of X-ray scattering, AFM and vertical charge transport measurements in diode devices. Block copolymer self-assembly and crystallization of the individual components are interrelated and different structural states of the films could be prepared by varying preparation conditions and thermal history. Generally the well-defined microphase structures found previously in bulk could also be prepared in thin films, in addition alignment induced by interfacial interactions was observed. Microphase separated block copolymers sustain ambipolar charge transport, but the exact values of electron and hole mobilities depend strongly on orientation and connectivity of the microdomains as well as the molecular order within the domains.

7.
ACS Appl Mater Interfaces ; 6(14): 11068-81, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24979240

ABSTRACT

The influence of various polar solvent additives with different dipole moments has been investigated since the performance of a photovoltaic device comprising a donor-acceptor copolymer (benzothiadiazole-fluorene-diketopyrrolopyrrole (BTD-F-DKPP)) and phenyl-C60-butyric acid methyl ester (PCBM) was notably increased. A common approach for controlling bulk heterojunction morphology and thereby improving the solar cell performance involves the use of solvent additives exhibiting boiling points higher than that of the surrounding solvent in order to allow the fullerene to aggregate during the host solvent evaporation and film solidification. In contrast to that, we report the application of polar solvent additives with widely varied dipole moments, where intentionally no dependence on their boiling points was applied. We found that an appropriate amount of the additive can improve all solar cell parameters. This beneficial effect could be largely attributed to a modification of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-active layer interface within the device layer stack, which was successfully reproduced for polymer solar cells based on the commonly used PCDTBT (poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)]) copolymer.

8.
Nanoscale ; 6(10): 5230-8, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24687008

ABSTRACT

In this work, a wet-chemical synthesis method for gold-silver core-shell particles with nanometer precise adjustable silver shell thicknesses is presented. Typically wet-chemical syntheses lead to relatively large diameter size distributions and losses in the yield of the desired particle structure due to thermodynamical effects. With the here explained synthesis method in micro fluidic segment sequences, a combinatorial in situ parameter screening of the reactant concentration ratios by programmed flow rate shifts in conjunction with efficient segment internal mixing conditions is possible. The highly increased mixing rates ensure a homogeneous shell deposition on all presented gold core particles while the amount of available silver ions was adjusted by automated flow rate courses, from which the synthesis conditions for exactly tunable shell thicknesses between 1.1 and 6.1 nm could be derived. The findings according to the homogeneity of size and particle structure were confirmed by differential centrifugal sedimentation (DCS), scanning and transmission electron microscopy (SEM, TEM) and X-ray photoelectron spectroscopy (XPS) measurements. In UV-Vis measurements, a significant contribution of the core metal was found in the shape of the extinction spectra in the case of thin shells. These results were confirmed by theoretical calculations.

9.
Langmuir ; 29(21): 6296-301, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23617559

ABSTRACT

A thermally induced functionalization process for gallium nitride surfaces with 1-alkenes is introduced. The resulting functionalization layers are characterized with atomic force microscopy and X-ray photoelectron spectroscopy and compared to reference samples without and with a photochemically generated functionalization layer. The resulting layers show very promising characteristics as functionalization for GaN based biosensors. On the basis of the experimental results, important characteristics of the functionalization layers are estimated and a possible chemical reaction scheme is proposed.


Subject(s)
Alkenes/chemistry , Gallium/chemistry , Temperature , Molecular Structure , Particle Size , Surface Properties
10.
J Colloid Interface Sci ; 386(1): 252-9, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22918053

ABSTRACT

The specific design and modification of surfaces is of great interest, especially for functional surfaces and medical applications. In order to obtain films on a surface, the layer-by-layer deposition of polyelectrolytes represents a well-established methodology. The alternating deposition of poly(L-histidine) and poly(L-glutamic acid) results in a defined, continuous surface coating that was thoroughly characterized using X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, ellipsometry, X-ray reflectometry, atomic force microscopy, scanning electron microscopy, contact angle, and electrokinetic measurements. Surface charge, film growth, and final thickness were measured and cross-validated. Additionally, the chemical composition and distribution of polyelectrolytes in the layerstack were determined. Finally, the optical parameters were specified and the surface topography was visualized by several methods. These characterizations revealed a coating with embedded spheroids forming from the bottom layers. This rough surface formed by (PLH/PGA)(8) was highly reproducible and might provide unique features for the design of tailored surfaces.


Subject(s)
Glutamic Acid/chemistry , Histidine/chemistry , Nanotechnology/methods , Silicon/chemistry , Photoelectron Spectroscopy , Surface Properties
11.
Chemphyschem ; 13(7): 1718-24, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22517561

ABSTRACT

We apply electron spectroscopy methods with different surface sensitivities to elucidate the DOS of the surface and the near-surface region of [XMIm]Cl (X=octyl, hexyl, butyl, and ethyl alkyl chain) ionic liquids. Using metastable induced electron spectroscopy (MIES) we are able to detect the density of states in front of the outermost surface, whereas ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) measurements provide lower surface sensitivity. The assignment of certain structures in the valence band spectra to particular atoms/functional groups of the ionic liquid based on DFT calculations and the reconstruction of PES spectra enables us to obtain information on the dominating groups at the surface, or in other words, on the molecular/ionic arrangement and orientation at the surface. From angular resolved XPS it is concluded that the alkyl chains dominate at the outermost surface. In agreement with this a decreasing chlorine signal is observed in the UPS spectra for ionic liquids with increasing alkyl chain length. The analysis of the MIES data shows that in case of [OMIm]Cl--in contrast to UPS and XPS--no Cl-induced features are visible in the MIES spectra at all and that the MIES spectra are dominated by the [OMIm](+) alkyl chain.

12.
Phys Chem Chem Phys ; 13(43): 19526-33, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-21971301

ABSTRACT

We have recently measured core level and valence band XPS, UPS, and MIES spectra of two room temperature ionic liquids composed of bis(trifluoromethylsulfonyl)imide anions ([Tf(2)N](-)) and either 1-ethyl-3-methyl-imidazolium ([EMIm](+)) or 1-octyl-3-methyl-imidazolium cations ([OMIm](+)). [T. Ikari, A. Keppler, M. Reinmöller, W. J. D. Beenken, S. Krischok, M. Marschewski, W. Maus-Friedrichs, O. Höfft and F. Endres, e-J. Surf. Sci. Nanotechnol., 2010, 8, 241.] In the present work we analyze these spectra by means of partial density of states (pDOS) as calculated from a single ion pair of the respective ionic liquid using density functional theory (DFT). Subsequently we reconstruct the XPS and UPS spectra by considering photoemission cross sections and analyze the MIES spectra by pDOS, which provides us decisive hints to the ionic liquid surface structure.

13.
Phys Chem Chem Phys ; 13(3): 1174-81, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21072417

ABSTRACT

Radiation induced degradation effects are studied for a model ionic liquid (IL)--[EMIm]Tf(2)N--in order to distinguish in which way the results of X-ray based material analysis methods can be falsified by the radiation supplied by typical X-ray sources itself. Photoelectron spectroscopy is commonly used for determining the electronic structure of ionic liquids. Degradation effects, which often occur e.g. in organic materials during X-ray or electron irradiation, are potentially critical for the interpretation of data obtained from ionic liquids. The changes of the chemical composition as well as the radiation-induced desorption of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm]Tf(2)N) fragments are analysed by X-ray photoelectron spectroscopy (XPS) as well as quadrupole mass spectroscopy (QMS) upon exposure to monochromated or non-monochromated AlKα X-rays from typical laboratory sources. During the irradiation of [EMIm]Tf(2)N, an increasing carbon concentration is observed in both cases and especially the [Tf(2)N](-) ion is strongly altered. This observation is supported by the results from the QMS analysis which revealed a variety of different IL fragments that are desorbed during X-ray irradiation. It is shown that the decomposition rate is directly linked to the photon flux on the sample and hence has to be considered when planning an XPS experiment. However, for typical experiments on this particular IL the measurements suggest that the changes are on a larger time scale as typically required for spectra acquisition, in particular if monochromated X-ray sources are used.

14.
ACS Appl Mater Interfaces ; 1(7): 1451-6, 2009 Jul.
Article in English | MEDLINE | ID: mdl-20355948

ABSTRACT

Indium-tin-oxynitride (ITON) films have been fabricated by rf sputtering from an indium-tin-oxide target in nitrogen plasma. The influence of postdeposition annealing up to 800 degrees C is analyzed by electrical, optical, and surface characterization of the films in comparison to indium-tin-oxide (ITO) films fabricated in argon plasma. High-temperature annealing resulted in ITO(N) films with similar carrier concentrations. However, the resistivity and optical transmittance of the ITON films were higher than those of the ITO films. Photoelectron spectroscopy revealed that nitrogen is incorporated into the ITON structure in an unbound state as well as through the formation of metal-nitrogen and oxynitride bonds that decorate oxygen vacancies. When the core level electron spectra of ITO and ITON films are compared, a correlation between carrier concentration and the incorporated nitrogen is found. Changes in ITON electrical properties are mainly induced by the release of nitrogen at temperatures above 550 degrees C. In this context, ohmic contact behavior was achieved for ITON on p-type GaN after annealing at 600 degrees C, while no ohmic contact could be realized using ITO.

SELECTION OF CITATIONS
SEARCH DETAIL
...