Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1213761, 2023.
Article in English | MEDLINE | ID: mdl-37664461

ABSTRACT

PEX19 binding sites are essential parts of the targeting signals of peroxisomal membrane proteins (mPTS). In this study, we characterized PEX19 binding sites of PEX11, the most abundant peroxisomal and glycosomal membrane protein from Trypanosoma brucei and Saccharomyces cerevisiae. TbPEX11 contains two PEX19 binding sites, one close to the N-terminus (BS1) and a second in proximity to the first transmembrane domain (BS2). The N-terminal BS1 is highly conserved across different organisms and is required for maintenance of the steady-state concentration and efficient targeting to peroxisomes and glycosomes in both baker's yeast and Trypanosoma brucei. The second PEX19 binding site in TbPEX11 is essential for its glycosomal localization. Deletion or mutations of the PEX19 binding sites in TbPEX11 or ScPEX11 results in mislocalization of the proteins to mitochondria. Bioinformatic analysis indicates that the N-terminal region of TbPEX11 contains an amphiphilic helix and several putative TOM20 recognition motifs. We show that the extreme N-terminal region of TbPEX11 contains a cryptic N-terminal signal that directs PEX11 to the mitochondrion if its glycosomal transport is blocked.

2.
Methods Mol Biol ; 2643: 33-45, 2023.
Article in English | MEDLINE | ID: mdl-36952176

ABSTRACT

Glycosomes, belonging to the sub-class of peroxisomes, are single-membrane-bound organelles of trypanosomatid parasites. Glycosomes compartmentalize mainly glycolytic and other essential metabolic pathways such as gluconeogenesis, pentose phosphate pathway, sugar nucleotide biosynthesis, etc. Since glycosomes are parasite-specific and their biogenesis is essential for the parasite survival, they have attracted a lot of interest over the years. Understanding the glycosomal enzyme composition and machinery involved in the biogenesis of this organelle requires the knowledge of the glycosomal proteome. Here we describe a method to isolate highly purified glycosomes and further enrichment of the glycosomal membrane proteins from the pro-cyclic form of Trypanosoma brucei. The isolation method is based on the controlled rupture of the cells by silicon carbide, followed by the differential centrifugation, and density gradient centrifugation. Further, the glycosomal membrane proteins are enriched from the purified glycosomes by the successive treatments with low-salt, high-salt, and alkaline carbonate buffer extractions.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolism , Microbodies , Peroxisomes/metabolism , Glycolysis , Membrane Proteins/metabolism , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...