Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Genome ; 10(1)2017 03.
Article in English | MEDLINE | ID: mdl-28464061

ABSTRACT

More than 80% of the 19 million ha of maize ( L.) in tropical Asia is rainfed and prone to drought. The breeding methods for improving drought tolerance (DT), including genomic selection (GS), are geared to increase the frequency of favorable alleles. Two biparental populations (CIMMYT-Asia Population 1 [CAP1] and CAP2) were generated by crossing elite Asian-adapted yellow inbreds (CML470 and VL1012767) with an African white drought-tolerant line, CML444. Marker effects of polymorphic single-nucleotide polymorphisms (SNPs) were determined from testcross (TC) performance of F families under drought and optimal conditions. Cycle 1 (C1) was formed by recombining the top 10% of the F families based on TC data. Subsequently, (i) C2[PerSe_PS] was derived by recombining those C1 plants that exhibited superior per se phenotypes (phenotype-only selection), and (ii) C2[TC-GS] was derived by recombining a second set of C1 plants with high genomic estimated breeding values (GEBVs) derived from TC phenotypes of F families (marker-only selection). All the generations and their top crosses to testers were evaluated under drought and optimal conditions. Per se grain yields (GYs) of C2[PerSe_PS] and that of C2[TC-GS] were 23 to 39 and 31 to 53% better, respectively, than that of the corresponding F population. The C2[TC-GS] populations showed superiority of 10 to 20% over C2[PerSe-PS] of respective populations. Top crosses of C2[TC-GS] showed 4 to 43% superiority of GY over that of C2[PerSe_PS] of respective populations. Thus, GEBV-enabled selection of superior phenotypes (without the target stress) resulted in rapid genetic gains for DT.


Subject(s)
Acclimatization/genetics , Plant Breeding , Zea mays/genetics , Droughts , Edible Grain/genetics , Edible Grain/physiology , Selection, Genetic , Zea mays/physiology
2.
Cell Mol Biol Lett ; 9(4A): 685-97, 2004.
Article in English | MEDLINE | ID: mdl-15647791

ABSTRACT

Cultivated peanut or groundnut (Arachis hypogaea L) is an important source of oil and protein. Considerable variation has been recorded for morphological, physiological and agronomic traits, whereas few molecular variations have been recorded for this crop. The identification and understanding of molecular genetic diversity in cultivated peanut types will help in effective genetic conservation along with efficient breeding programs in this crop. The New Mexico breeding program has embarked upon a program of improvement of Valencia peanut (belonging to the sub species fastigiata), because efforts to improve the yield potential are lacking due to lack of identified divergent exotic types. For the first time, this study has shown molecular diversity using microsatellite markers in the cultivated Valencia peanut (sub spp. fastigiata) from around the globe. In this investigation, 48 cultivated Valencia peanut genotypes have been selected and analyzed using 18 fluorescently labeled SSR (f-SSR) primer pairs. These primer pairs amplified 120 polymorphic loci among the genotypes screened and amplified from 3 to 19 alleles with an average of 6.9 allele per primer pair. The f-SSR marker data was further analyzed using cluster algorithms and principal component analysis. The results indicated that (1) considerable genetic variations were discovered among the analyzed genotypes; (2) The f-SSR based clustering could identify the putative pedigree types of the present Valencia types of diverse origins, and (3) The f-SSR in general is sufficient to obtain estimates of genetic divergence for the material in study. The results are being utilized in our breeding program for parental selection and linkage map construction.


Subject(s)
Arachis/genetics , Microsatellite Repeats/genetics , Polymorphism, Genetic , Genotype , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...