Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 155: 213679, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944450

ABSTRACT

Physiochemical properties of polycaprolactone-hydroxyapatite (PCL-HAp) composites were investigated in the pristine and after irradiation of γ rays (25, 50, 75, and 100 kGy). PCL-HAp composites were synthesized by solvent evaporation and characterized using spectroscopic methods as well as biological assays. The surface roughness (RMS) of the irradiated composite film (at 75 kGy) was 80 times higher than that of the pristine. Irradiation tailors the contact angle of the films from 77° to 90° (at 100 kGy). A decrease in particle size (at 100 kGy) of HAp nanorods in PCL-HAp composites film was observed. The XRD peak of PCL was slightly shifted from 21.2° to 21.7° (at 100 kGy) with the decrease in crystallite size. The peak intensity of the PCL and HAp altered on irradiation that was confirmed by FTIR and Raman analysis. Further, the bandgap of the irradiated film was lowered by 13 % (at 25 kGy). The luminescence intensity decreased due to the non-radiative process induced by the irradiation defects. All the samples possess hemocompatibility percentage of <10 % as per ASTM standards. At 75 kGy, fibroblast cell proliferation was higher than the pristine and other doses. The gamma-irradiated PCL-HAp composite films are potential candidates for tissue engineering applications.


Subject(s)
Durapatite , Polyesters , Durapatite/pharmacology , Durapatite/chemistry , Polyesters/pharmacology , Tissue Engineering , Spectrum Analysis/methods
2.
Carbohydr Polym ; 153: 619-630, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27561534

ABSTRACT

Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N(3+) ions of energy 24keV in the fluences of 1×10(15), 5×10(15) and 1×10(16)ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications.


Subject(s)
Cellulose/chemistry , Polyvinyl Alcohol/chemistry , Silicon Dioxide/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Cell Adhesion , Cell Line , Elastic Modulus , Electric Conductivity , Gossypium/chemistry , Humans , Ions/chemistry , Luminescence , Luminescent Agents/chemistry , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...