Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34948345

ABSTRACT

Functional properties and biological activities of plant-derived polyphenolic compounds have gained great interest due to their epidemiologically proven health benefits and diverse industrial applications in the food and pharmaceutical industry. Moreover, the food processing conditions and certain chemical reactions such as pigmentation, acylation, hydroxylation, and glycosylation can also cause alteration in the stability, antioxidant activity, and structural characteristics of the polyphenolic compounds. Since the (poly)phenols are highly reactive, to overcome these problems, the formulation of a complex of polyphenolic compounds with natural biopolymers is an effective approach. Besides, to increase the bioavailability and bioaccessibility of polyphenolic compounds, milk proteins such as whey protein concentrate, sodium caseinate, and milk protein concentrate act as natural vehicles, due to their specific structural and functional properties with high nutritional value. Therefore, milk proteins are suitable for the delivery of polyphenols to parts of the gastrointestinal tract. Therefore, this review reports on types of (poly)phenols, methods for the analysis of binding interactions between (poly)phenols-milk proteins, and structural changes that occur during the interaction.


Subject(s)
Food Handling , Milk Proteins/chemistry , Polyphenols/chemistry , Biological Availability , Caseins , Polyphenols/pharmacokinetics
2.
Polymers (Basel) ; 13(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34578063

ABSTRACT

Milk can be considered one of the primary sources of nutrients for the mammalian neonate. Therefore, milk and milk-based products, such as infant formula, whey protein isolate, different varieties of cheese, and others are prepared to meet the nutritional requirements of the consumer. Due to its significant nutritional components and perishable nature, a variety of pathogenic microorganisms can grow and multiply quickly in milk. Therefore, various heat treatments can be employed for the improvement of the shelf life of milk. In comparison to pasteurized milk, due to excessive and severe heating, UHT milk has a more cooked flavor. During storage, changes in the physicochemical properties of milk can lead to off-flavors, undesirable browning, separation of fat, sediment formation, or gelation during the subsequent storage. Several important factors such as processing parameters, time-temperature abuse (storage condition), and packaging type also influence the quality characteristics and consumer acceptance of the milk; however, the influence of heat treatments on milk protein is inconstant. The major protein modifications that occur during UHT treatment are denaturation and aggregation of the protein, and chemical modifications of its amino acids. These UHT-induced protein alterations can change digestibility and the overall biological influence of the intake of these proteins. Therefore, this review is focused on the influence of UHT on the physicochemical and structural attributes of milk proteins during storage. There are many indications of milk proteins present in the UHT milk, and milk products are altered during processing and storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...