Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 287(Pt 4): 132348, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34624585

ABSTRACT

At present energy and environmental remediation are of highest priority for the well defined sustainability. Multifunctional materials that solve both the issues are on high demand. In the present work, a simple method has been followed to extract carbon spheres fromTamarindus indica(commonly known astamarind fruit) shelland doped with nitrogen (N-CS). Vanadium pentoxide nanoflakes were decorated aroundN-CS and the resultant is labeled as V2O5/N-CS nanocomposite. The spectroscopic, microscopic, elemental mapping and x-ray photoelectron spectroscopic characterization confirm the nitrogen doping and formation of hybrid material. N-CS, V2O5, and V2O5/N-CS nanocompositehave been evaluated for their efficiency to evolve hydrogen and for degradation of Bisphenol A (BPA) under visible light. In addition, electrocatalytic hydrogen evolution in presence of light has also been evaluated. The DRS spectrum proves the decrease in the bandgap of V2O5 upon its decoration around N-CS material. In a photochemical experiment, the V2O5/N-CS nanocomposite evolved 18,600 µmolg-1 of H2.Electrochemical hydrogen evolution has also been evaluated in presence of light and obtained the onset potential of -60mV with 52 mV dec-1 Tafel slope value. Scavenger studies indicate superoxide radicals and hydroxyl radicals are the active species responsible for the degradation of BPA. BPA degradation pathway has been predicted with the support of LC-MS results of the intermediates. All these results indicate the synthesized nanocomposite could be an efficient, stable multifunctional material for photocatalytic applications.


Subject(s)
Nitrogen , Tamarindus , Benzhydryl Compounds , Carbon , Catalysis , Hydrogen , Phenols , Vanadium Compounds , Water
2.
Chemosphere ; 286(Pt 2): 131764, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34364229

ABSTRACT

In this study, a novel and sustainable approach was used to synthesize nitrogen-doped carbon dots (NCDs) from the waste biomass of Poa Pratensis (Kentucky bluegrass (KB)) by a facile hydrothermal method. The prepared KBNCDs were subjected to various characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy to verify the formation of carbon dots and their surface functional groups. The KBNCDs exhibited good hydrophilic fluorescence (FLU) properties with an acceptable quantum yield (7%). The synthesized KBNCDs showed excitation wavelength-dependent FLU emission behavior with strong cyan-blue FLU upon irradiation with 365 nm UV-light. The hydrophilic optical properties of the as-synthesized KBNCDs were used to detect Fe3+ and Mn2+ ions in an aqueous medium with good selectivity and sensitivity. It was found that the FLU of the KBNCDs is quenched in the presence of Fe3+ and Mn2+ ions, and the quenching rate was linear with the concentration of Fe3+ and Mn2+ ions. The limit of detection (LOD) of KBNCDs with metal ions was calculated using the Stern-Volmer relationship. The LOD values for Fe3+ or Mn2+ ions were calculated as 1.4 and 1.2 µM, respectively with the detection range from 5.0 to 25 µM. Based on these results, this study provides an underpinning for the development of KBNCD as FLU sensors that can be used in aqueous media.


Subject(s)
Poa , Quantum Dots , Biomass , Carbon , Nitrogen
3.
Ultrason Sonochem ; 34: 729-742, 2017 01.
Article in English | MEDLINE | ID: mdl-27773300

ABSTRACT

In this investigation, sisal fibres were treated with the combination of alkali and high intensity ultrasound (HIU) and their effects on the morphology, thermal properties of fibres and mechanical properties of their reinforced PP composites were studied. FTIR and FE-SEM results confirmed the removal of amorphous materials such as hemicellulose, lignin and other waxy materials after the combined treatments of alkali and ultrasound. X-ray diffraction analysis revealed an increase in the crystallinity of sisal fibres with an increase in the concentration of alkali. Thermogravimetric results revealed that the thermal stability of sisal fibres obtained with the combination of both alkali and ultrasound treatment was increased by 38.5°C as compared to the untreated fibres. Morphology of sisal fibre reinforced composites showed good interfacial interaction between fibres and matrix after the combined treatment. Tensile properties were increased for the combined treated sisal fibres reinforced PP composites as compared to the untreated and pure PP. Tensile modulus and strength increased by more than 50% and 10% respectively as compared to the untreated sisal fibre reinforced composite. It has been found that the combined treatment of alkali and ultrasound is effective and useful to remove the amorphous materials and hence to improve the mechanical and thermal properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...