Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(44)2020 10.
Article in English | MEDLINE | ID: mdl-33115749

ABSTRACT

Sequestration of plastics in sediments is considered the ultimate sink of marine plastic pollution that would justify unexpectedly low loads found in surface waters. Here, we demonstrate that mangroves, generally supporting high sediment accretion rates, efficiently sequester plastics in their sediments. To this end, we extracted microplastics from dated sediment cores of the Red Sea and Arabian Gulf mangrove (Avicennia marina) forests along the Saudi Arabian coast. We found that microplastics <0.5 mm dominated in mangrove sediments, helping explain their scarcity, in surface waters. We estimate that 50 ± 30 and 110 ± 80 metric tons of plastic may have been buried since the 1930s in mangrove sediments across the Red Sea and the Arabian Gulf, respectively. We observed an exponential increase in the plastic burial rate (8.5 ± 1.2% year-1) since the 1950s in line with the global plastic production increase, confirming mangrove sediments as long-term sinks for plastics.

2.
Carcinogenesis ; 36 Suppl 1: S160-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26106136

ABSTRACT

Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.


Subject(s)
Environmental Exposure/adverse effects , Hazardous Substances/adverse effects , Tumor Microenvironment/drug effects , Animals , Carcinogenesis/chemically induced , Humans , Neoplasms/chemically induced
3.
Mar Pollut Bull ; 64(2): 325-35, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22136761

ABSTRACT

The 1991 Gulf oil spill heavily impacted the coastal areas of the Saudi waters of the Arabian Gulf and recent studies have indicated that even 15 years after the incident, macrobenthos had not completely recovered in the sheltered bays in the affected region such as, Manifa Bay. This study investigates the community conditions of macrobenthos in the open waters in one of the impacted areas, Al-Khafji waters, about 14 years after the spill. Diversity measures and community structure analyses indicate a healthy status of polychaete communities. The BOPA index reveals that oil sensitive amphipods were recolonized in the study area. This confirms that the benthic communities of the oil spill impacted area had taken only <14 years to recover in the open waters of the impacted areas. The study also reveals the existence of three distinct polychaete communities along the depth and sediment gradients.


Subject(s)
Ecosystem , Geologic Sediments/analysis , Petroleum Pollution , Amphipoda/physiology , Animals , Bays/analysis , Biodiversity , Polychaeta/physiology , Saudi Arabia
4.
Mar Pollut Bull ; 62(6): 1249-60, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21453935

ABSTRACT

Shallow water bays located in the western Arabian Gulf experience harsh environmental conditions. Some of these bays, including Manifa-Tanajib Bay System (MTBS), were also exposed to the 1991 oil pollution event. This study investigates the status of the macrobenthos in MTBS during 2006. This bay system is characterized by very shallow inner bays with elevated salinity and temperature compared to the rest of the bay area. As a result mainly of the hyper salinity, the inner bay communities are distinct from the outer bay communities. Overall, fairly high species richness with several rare species was observed. High Shannon-Wiener diversity values and ABC plots indicated the healthy status of the polychaete communities, while BOPA index indicated slightly polluted status in 20% of the stations. The oil sensitive amphipods were not completely re-colonized in 20% of the stations, even after 15 years of recovery from the 1991 oil spill.


Subject(s)
Aquatic Organisms/growth & development , Biodiversity , Environmental Monitoring/methods , Invertebrates/growth & development , Animals , Aquatic Organisms/classification , Geologic Sediments/chemistry , Invertebrates/classification , Oceans and Seas , Polychaeta/classification , Polychaeta/growth & development , Saudi Arabia , Seawater/chemistry , Seaweed/classification , Seaweed/growth & development , Water Pollution, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data
5.
Ecotoxicology ; 15(4): 347-52, 2006 May.
Article in English | MEDLINE | ID: mdl-16703456

ABSTRACT

The green mussel Perna viridis was sampled from relatively clean and contaminated sites along the Kartanata-Kerala coast (south west coast of India) to study the tissue concentration of trace metals and biological responses to stress (biomarkers) such as sister chromatid exchange (SCE), chromosomal aberration, micronucleus (MN) test, hemic neoplasia (HN), Chromotest (Ames test) and comet assay. In general, mean tissue concentrations of toxic trace metals collected from 25 sampling sites were found to be below the World Health Organisation (WHO) permissible concentration given for seafood. The digestive gland extract of mussels from all 25 sampling sites showed negative reaction for mutagenic activity (Ames test) in the absence of metabolic activation. Very low levels of chromosomal aberration, SCE, MN, HN and comet cells were observed in mussels collected from both the urban associated and relatively clean sites. This study seems to indicate that that the coastal waters of Karnataka and Kerala are minimally contaminated with genotoxic and carcinogenic chemicals.


Subject(s)
Environmental Monitoring , Perna/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/analysis , Carcinogens, Environmental/toxicity , Chromosome Aberrations/drug effects , Comet Assay , Hematologic Neoplasms/chemically induced , India , Industry , Micronucleus Tests , Mutagens/toxicity , Perna/chemistry , Perna/genetics , Seawater , Sister Chromatid Exchange/drug effects , Trace Elements/analysis
6.
Arch Environ Contam Toxicol ; 51(2): 206-14, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16583254

ABSTRACT

The green mussel (Perna viridis) is widely distributed in the coastal waters of Asia and is used in mussel watch programmes for monitoring environmental contaminants throughout the region. Green mussels representing different size groups and habitats were sampled from their natural beds at 28 locations in the inshore waters of Karnataka (southwest coast of India) to analyze the tissue concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. Tissue concentrations of Cr, Cu, Fe, and Pb were significantly higher in smaller mussels than in the larger size group. Significantly higher concentrations of Cr, Cu, Fe, Mn, and Ni were observed in mussels sampled from intertidal beds when compared to mussels from the subtidal beds. The sampling sites were categorized into industrial sites (IS), urban sites (US), and nonurban sites (NS) based on principal component analysis of metal concentrations in mussel. Spatial variations in tissue concentrations of all metals were observed except for Zn. Generally, the levels of toxic trace metals like Pb, Cd, Ni, and Cr in the whole tissue of P. viridis were within safe limits throughout the coast of Karnataka. However, relatively high concentrations of Cd, Cr, and Pb were observed in the whole tissue of green mussels collected from the industrial sites (IS), which may be derived from a variety of anthropogenic activities.


Subject(s)
Metals, Heavy/analysis , Perna/chemistry , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring , India , Seawater
7.
Arch Environ Contam Toxicol ; 44(1): 43-52, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12434218

ABSTRACT

A selected suite of cytochemical parameters in Mytilus edulis are altered in response to field and laboratory exposure to chemical contaminants. These biomarkers include lysosomal stability, nicotinamide adenine dinucleotide phosphate (NADPH)-ferrihemoprotein reductase activity, liposfuscin deposition, and accumulation of lysosomal and cytoplasmic unsaturated neutral lipid. Normal variations in physiological processes (influenced by exogenous seasonal changes in temperature, salinity, food availability, etc.) may alter the sensitivity of these biomarkers to contaminant exposure. To address this issue, M. edulis (complex) were sampled monthly from a reference nonurban site (Coupeville, Penn Cove) and a polluted urban site (Seacrest, Elliott Bay) in Puget Sound, WA, for a period of 15 months. Physiological measurements including total length, total weight, somatic and mantle weights (an indication of gonadal development and reproductive status), condition index, and the presence or absence of hemic neoplasia (HN, or leukemia) were recorded. Significant differences in lysosomal stability, lysosomal and cytoplasmic unsaturated neutral lipids, lipofuscin deposition, and NADPH-ferrihemoprotein reductase activity in cells of the digestive gland or digestive tubules were generally found in mussels taken throughout the year from Seacrest compared to mussels sampled from Coupeville, consistent with exposure to chemical contaminants. No seasonally influenced suppression of the entire suite of parameters as measures of contaminant exposure was evident. Therefore these biomarkers can be used to evaluate contaminant exposure in mussels throughout the entire year.


Subject(s)
Adaptation, Physiological , Biomarkers/analysis , Bivalvia/physiology , Water Pollutants/adverse effects , Animals , Body Weight , Environmental Monitoring , Ferredoxin-NADP Reductase/analysis , Ferredoxin-NADP Reductase/pharmacology , Lipid Metabolism , Lipofuscin/metabolism , Lysosomes/metabolism , Reproduction , Seasons
8.
J Invertebr Pathol ; 73(2): 135-46, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10066393

ABSTRACT

The relationship between hemic neoplasia, a blood cell disorder in bivalve molluscs, and chemical contaminants was evaluated in the common mussel (Mytilus edulis complex). Hemic neoplasia (HN) is endemic to mussel populations in Puget Sound. The prevalence of hemic neoplasia ranged from 0 to 30% in mussels from nine sites in Puget Sound, Washington. Organic chemical contamination in sediment from these sites range from 0.1 to 64.0 ppm of polycyclic aromatic hydrocarbons (PAHs) and 0.07 to 0.50 ppm chlorinated hydrocarbons. No relationship between the body burden of environmental contaminants and the prevalence of HN in mussels was identified. To evaluate the short-term ability of chemical contaminants to induce HN in mussels, mussels, from a site where mussels were previously determined to be HN free, were fed microencapsulated PAHs (composed of a mixture of phenanthrene, flouranthene, and benzo[a]pyrene) or PCBs (Aroclor 1254) and the prevalence of HN was assessed after 30 days of exposure. Although an apparent increase in HN prevalence (20 to 30%) was observed in all treatments groups except the untreated controls, no significant difference in the prevalence of HN was observed between the control group of mussels fed corn oil (vehicle) and mussels fed either PAHs or PCBs in corn oil. A long-term (180-day) exposure study was conducted to evaluate the influence of PAHs or PCBs in modulating the prevalence of HN in a mussel population already exhibiting a moderate HN prevalence. Mussels, from a site where mussels were previously determined to exhibit a background prevalence of HN, fed microencapsulated PAHs, PCBs, and corn oil (vehicle) over a long time period (180 days), revealed an apparent increased prevalence of HN (30 to 40%) above the low levels (20%) initially present. However, no significant difference in the prevalence of HN was observed between the control group of mussels fed corn oil (vehicle) and mussels fed either PAHs or PCBs in corn oil. Although chemical contaminants have been proposed as a modulating factor in the development and promotion of HN in bivalve molluscs from environmentally stressed and degraded habitats, we find no evidence that chemical contaminants induce or promote the development of HN in the mussel M. edulis complex.


Subject(s)
Bivalvia , Environmental Pollutants , Leukemia , Animals , Body Burden , /pharmacology , Oceans and Seas , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/pharmacology , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/pharmacology , Washington
SELECTION OF CITATIONS
SEARCH DETAIL
...