Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 227: 115369, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31590875

ABSTRACT

The isolation, screening, and identification of multi-metal resistant (Cd, Cu, Pb, and Zn) bacteria from polluted coastal sediment samples were performed. In this study, the isolates S2-2 and S3-2 had higher multi-metal resistance and were identified as Pseudomonas pachastrellae KMS2-2 and Bacillus cereus KMS3-1, respectively. One-variable-at-a time approach suggested that optimum conditions for exopolysaccharides (EPS) production were pH 7.0, incubation time 120 h, 5 g/L sucrose, and 10 g/L yeast extract. Further, optimization by central composite design revealed that the optimum concentrations of sucrose and yeast extract for higher EPS production (8.9 g/L) were 5 g/L, and 30 g/L, respectively. Heteropolysaccharide nature of EPS determined by FTIR, TLC, and HPLC analysis, consist of mannose, rhamnose, glucose, and xylose. In addition, EPS showed strong emulsifying and flocculation activity. Results suggested the potential EPS-producing multi-metal resistant Bacillus cereus KMS3-1 could be used in biotechnological and industrial application, especially metal removal.


Subject(s)
Bacillus cereus/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Bacillus cereus/drug effects , Bacillus cereus/isolation & purification , Emulsions , Flocculation , Geologic Sediments/microbiology , Metals, Heavy/pharmacology , Pseudomonas/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...