Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Clin Neurophysiol ; 160: 12-18, 2024 04.
Article in English | MEDLINE | ID: mdl-38367309

ABSTRACT

OBJECTIVE: Diabetic peripheral neuropathy (DPN) is a frequent complication for persons with type 2 diabetes. Previous studies have failed to demonstrate any significant impact of treatment for DPN. The present study assessed the role of axonal ion channel dysfunction in DPN and explored the hypothesis that there may be a progressive change in ion channel abnormalities that varied with disease stage. METHODS: Neurophysiological studies were conducted using axonal excitability techniques, a clinical method of assessing ion channel dysfunction. Studies were conducted in 178 persons with type 2 diabetes, with participants allocated into four groups according to clinical severity of neuropathy, assessed using the Total Neuropathy Grade. RESULTS: Analysis of excitability data demonstrated a progressive and stepwise reduction in two parameters that are related to the activity of Kv1.1 channels, namely superexcitability and depolarizing threshold electrotonus at 10-20 ms (p < 0.001), and mathematical modelling of axonal excitability findings supported progressive upregulation of Kv1.1 conductances with increasing greater disease severity. CONCLUSION: The findings are consistent with a progressive upregulation of juxtaparanodal Kv1.1 conductances with increasing clinical severity of diabetic peripheral neuropathy. SIGNIFICANCE: From a translational perspective, the study suggests that blockade of Kv1.1 channels using 4-aminopyridine derivatives such as fampridine may be a potential treatment for DPN.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Diabetes Mellitus, Type 2/complications , Axons/physiology , 4-Aminopyridine , Ion Channels
2.
Mult Scler ; 30(4-5): 571-584, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38362861

ABSTRACT

BACKGROUND: Cognitive-motor step training can improve stepping, balance and mobility in people with multiple sclerosis (MS), but effectiveness in preventing falls has not been demonstrated. OBJECTIVES: This multisite randomised controlled trial aimed to determine whether 6 months of home-based step exergame training could reduce falls and improve associated risk factors compared with usual care in people with MS. METHODS: In total, 461 people with MS aged 22-81 years were randomly allocated to usual care (control) or unsupervised home-based step exergame training (120 minutes/week) for 6 months. The primary outcome was rate of falls over 6 months from randomisation. Secondary outcomes included physical, cognitive and psychosocial function at 6 months and falls over 12 months. RESULTS: Mean (standard deviation (SD)) weekly training duration was 70 (51) minutes over 6 months. Fall rates did not differ between intervention and control groups (incidence rates (95% confidence interval (CI)): 2.13 (1.57-2.69) versus 2.24 (1.35-3.13), respectively, incidence rate ratio: 0.96 (95% CI: 0.69-1.34, p = 0.816)). Intervention participants performed faster in tests of choice-stepping reaction time at 6 months. No serious training-related adverse events were reported. CONCLUSION: The step exergame training programme did not reduce falls among people with MS. However, it significantly improved choice-stepping reaction time which is critical to ambulate safely in daily life environment.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/therapy , Exercise Therapy , Exergaming , Risk Factors , Quality of Life
3.
AJNR Am J Neuroradiol ; 45(3): 256-261, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38388685

ABSTRACT

The Young Professionals Committee of the American Society of Neuroradiology identifies and serves the interests of young professionals in neuroradiology, defined as those still in training or within 5 years of its completion. Being a young professional is an exciting, dynamic, and demanding stage of one's professional career. As the landscape of neuroradiology practice changes, new opportunities and challenges occur for those in the early stage of their career. It is important to recognize and support the needs of young professionals because an investment in their professional development is an investment in the future of our specialty. In this article, we aimed to address the most notable developments relevant to current and future young professionals in neuroradiology as well as highlight the work done by the Young Professionals Committee of the American Society of Neuroradiology in serving the needs of these young professionals, focusing on early neuroradiology engagement, flexible work arrangements, private practice, social media, artificial intelligence, and international collaborations.


Subject(s)
Career Choice , Neuroradiography , Artificial Intelligence , United States
4.
Diabetologia ; 67(3): 561-566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38189936

ABSTRACT

AIMS/HYPOTHESIS: Diabetic peripheral neuropathy (DPN) is a highly prevalent cause of physical disability. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are used to treat type 2 diabetes and animal studies have shown that glucagon-like peptide-1 (GLP-1) receptors are present in the central and peripheral nervous systems. This study investigated whether GLP-1 RAs can improve nerve structure. METHODS: Nerve structure was assessed using peripheral nerve ultrasonography and measurement of tibial nerve cross-sectional area, in conjunction with validated neuropathy symptom scores and nerve conduction studies. A total of 22 consecutively recruited participants with type 2 diabetes were assessed before and 1 month after commencing GLP-1 RA therapy (semaglutide or dulaglutide). RESULTS: There was a pathological increase in nerve size before treatment in 81.8% of the cohort (n=22). At 1 month of follow-up, there was an improvement in nerve size in 86% of participants (p<0.05), with 32% returning to normal nerve morphology. A 3 month follow-up study (n=14) demonstrated further improvement in nerve size in 93% of participants, accompanied by reduced severity of neuropathy (p<0.05) and improved sural sensory nerve conduction amplitude (p<0.05). CONCLUSIONS/INTERPRETATION: This study demonstrates the efficacy of GLP-1 RAs in improving neuropathy outcomes, evidenced by improvements in mainly structural and morphological measures and supported by electrophysiological and clinical endpoints. Future studies, incorporating quantitative sensory testing and measurement of intraepidermal nerve fibre density, are needed to investigate the benefits for small fibre function and structure.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Animals , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetic Neuropathies/drug therapy , Glucagon-Like Peptide-1 Receptor Agonists , Follow-Up Studies , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use
5.
Ocul Immunol Inflamm ; 32(2): 234-241, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37801679

ABSTRACT

PURPOSE: This study aims to determine the effects of SGLT2 inhibitors on corneal dendritic cell density and corneal nerve measures in type 2 diabetes. METHODS: Corneal dendritic cell densities and nerve parameters were measured in people with type 2 diabetes treated with SGLT2 inhibitors (T2DM-SGLT2i) [n = 23] and those not treated with SGLT2 inhibitors (T2DM-no SGLT2i) [n = 23], along with 24 age and sex-matched healthy controls. RESULTS: There was a reduction in all corneal nerve parameters in type 2 diabetes groups compared to healthy controls (All parameters: p < 0.05). No significant differences in corneal nerve parameters were observed between T2DM-SGLT2i and T2DM-no SGLT2i groups (All parameters: p > 0.05). Central corneal dendritic cells were significantly reduced [mature (p = 0.03), immature (p = 0.06) and total (p = 0.002)] in the T2DM-SGLT2i group compared to the T2DM-no SGLT2i group. Significantly, higher mature (p = 0.04), immature (p = 0.004), total (p = 0.002) dendritic cell densities in the T2DM-no SGLT2i group were observed compared to the healthy controls. In the inferior whorl, no significant difference in immature (p = 0.27) and total dendritic cell densities (p = 0.16) between T2DM-SGLT2i and T2DM-no SGLT2i were observed except mature dendritic cell density (p = 0.018). No differences in total dendritic cell density were observed in the central (p > 0.09) and inferior whorl (p = 0.88) between T2DM-SGLT2i and healthy controls. CONCLUSION: The present study showed a reduced dendritic cell density in people with type 2 diabetes taking SGLT2 inhibitors compared to those not taking these medications.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Cornea , Cell Count , Dendritic Cells
7.
Biomedicines ; 11(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37760810

ABSTRACT

PURPOSE: The study aimed to ascertain the potential effects of chronic kidney disease (CKD) on substance P concentration in the tear film of people with type 2 diabetes. METHODS: Participants were classified into two groups: type 2 diabetes with concurrent chronic kidney disease (T2DM-CKD (n = 25)) and type 2 diabetes without chronic kidney disease (T2DM-no CKD (n = 25)). Ocular surface discomfort assessment, flush tear collection, in-vivo corneal confocal microscopy, and peripheral neuropathy assessment were conducted. Enzyme-linked immunosorbent assays were utilized to ascertain the levels of tear film substance P in collected flush tears. Correlation analysis, hierarchical multiple linear regression analysis, and t-tests or Mann-Whitney U tests were used in the analysis of data for two-group comparisons. RESULTS: There was no substantial difference between the T2DM-CKD and T2DM-no CKD groups for tear film substance P concentration (4.4 (0.2-50.4) and 5.9 (0.2-47.2) ng/mL, respectively; p = 0.54). No difference was observed in tear film substance P concentration between the low-severity peripheral neuropathy and high-severity peripheral neuropathy groups (4.4 (0.2-50.4) and 3.3 (0.3-40.7) ng/mL, respectively; p = 0.80). Corneal nerve fiber length (9.8 ± 4.6 and 12.4 ± 3.8 mm/mm2, respectively; p = 0.04) and corneal nerve fiber density (14.7 ± 8.5 and 21.1 ± 7.0 no/mm2, respectively; p < 0.01) were reduced significantly in the T2DM-CKD group compared to the T2DM-no CKD group. There were significant differences in corneal nerve fiber density (21.0 ± 8.1 and 15.8 ± 7.7 no/mm2, respectively; p = 0.04) and corneal nerve fiber length (12.9 ± 4.2 and 9.7 ± 3.8 mm/mm2, respectively; p = 0.03) between the low- and high-severity peripheral neuropathy groups. CONCLUSION: In conclusion, no significant difference in tear film substance P concentration was observed between type 2 diabetes with and without CKD. Corneal nerve loss, however, was more significant in type 2 diabetes with chronic kidney disease compared to type 2 diabetes alone, indicating that corneal nerve morphological measures could serve greater utility as a tool to detect neuropathy and nephropathy-related corneal nerve changes.

8.
Commun Biol ; 6(1): 652, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336941

ABSTRACT

In-vivo corneal confocal microscopy is a powerful imaging technique which provides clinicians and researcher with the capabilities to observe microstructures at the ocular surfaces in significant detail. In this Mini Review, the optics and image analysis methods with the use of corneal confocal microscopy are discussed. While novel insights of neuroanatomy and biology of the eyes, particularly the ocular surface, have been provided by corneal confocal microscopy, some debatable elements observed using this technique remain and these are explored in this Mini Review. Potential improvements in imaging methodology and instrumentation are also suggested.


Subject(s)
Cornea , Cornea/diagnostic imaging , Microscopy, Confocal/methods
9.
Clin Exp Optom ; 106(7): 694-702, 2023 09.
Article in English | MEDLINE | ID: mdl-36641840

ABSTRACT

The conjunctival microcirculation is an accessible complex network of micro vessels whose quantitative assessment can reveal microvascular haemodynamic properties. Currently, algorithms for the measurement of conjunctival haemodynamics use either manual or semi-automated systems, which may provide insight into overall conjunctival health, as well as in ocular and systemic disease. These algorithms include functional slit-lamp biomicroscopy, laser doppler flowmetry, optical coherence tomography angiography, orthogonal polarized spectral imaging, computer-assisted intravitral microscopy, diffuse reflectance spectroscopy and corneal confocal microscopy. Furthermore, several studies have demonstrated a relationship between conjunctival microcirculatory haemodynamics and many diseases such as dry eye disease, Alzheimer's disease, diabetes, hypertension, sepsis, coronary microvascular disease, and sickle cell anaemia. This review aims to describe conjunctival microcirculation, its characteristics, and techniques for its measurement, as well as the association between conjunctival microcirculation and microvascular abnormalities in disease states.


Subject(s)
Conjunctiva , Hemodynamics , Humans , Blood Flow Velocity , Microcirculation , Conjunctiva/blood supply , Slit Lamp Microscopy
10.
Vision Res ; 203: 108157, 2023 02.
Article in English | MEDLINE | ID: mdl-36450205

ABSTRACT

The only approved retinal gene therapy is for biallelic RPE65 mutations which cause a recessive retinopathy with a primary molecular defect located at the retinal pigment epithelium (RPE). For a distinct recessive RPE disease caused by biallelic BEST1 mutations, a pre-clinical proof-of-concept for gene therapy has been demonstrated in canine eyes. The current study was undertaken to consider potential outcome measures for a BEST1 clinical trial in patients demonstrating a classic autosomal recessive bestrophinopathy (ARB) phenotype. Spatial distribution of retinal structure showed a wide expanse of abnormalities including large intraretinal cysts, shallow serous retinal detachments, abnormalities of inner and outer segments, and an unusual prominence of the external limiting membrane. Surrounding the central macula extending from 7 to 30 deg eccentricity, outer nuclear layer was thicker than expected from a cone only retina and implied survival of many rod photoreceptors. Co-localized however, were large losses of rod sensitivity despite preserved cone sensitivities. The dissociation of rod function from rod structure observed, supports a large treatment potential in the paramacular region for biallelic bestrophinopathies.


Subject(s)
Bestrophins , Retinal Degeneration , Animals , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Bestrophins/genetics , Mutation , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Humans
12.
Invest Ophthalmol Vis Sci ; 63(13): 12, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36512348

ABSTRACT

Purpose: The purpose of this study was to evaluate rod and cone function and outer retinal structure within macular lesions, and surrounding extralesional areas of patients with autosomal dominant Best vitelliform macular dystrophy caused by BEST1 mutations. Methods: Seventeen patients from seven families were examined with dark- and light-adapted chromatic perimetry and optical coherence tomography. Subsets of patients had long-term follow-up (14-22 years, n = 6) and dark-adaptation kinetics measured (n = 5). Results: Within central lesions with large serous retinal detachments, rod sensitivity was severely reduced but visual acuity and cone sensitivity were relatively retained. In surrounding extralesional areas, there was a mild but detectable widening of the subretinal space in some patients and some retinal areas. Available evidence was consistent with subretinal widening causing slower dark-adaptation kinetics. Over long-term follow-up, some eyes showed formation of de novo satellite lesions at retinal locations that years previously demonstrated subretinal widening. A subclinical abnormality consisting of a retina-wide mild thickening of the outer nuclear layer was evident in many patients and thickening increased in the subset of patients with long-term follow-up. Conclusions: Outcome measures for future clinical trials should include evaluations of rod sensitivity within central lesions and quantitative measures of outer retinal structure in normal-appearing regions surrounding the lesions.


Subject(s)
Vitelliform Macular Dystrophy , Humans , Vitelliform Macular Dystrophy/diagnosis , Vitelliform Macular Dystrophy/genetics , Eye Proteins/genetics , Tomography, Optical Coherence/methods , Visual Field Tests , Mutation , Bestrophins/genetics
13.
Ophthalmol Sci ; 2(2): 100133, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36249682

ABSTRACT

Purpose: To understand consequences of reconstituting cone photoreceptor function in congenital binocular blindness resulting from mutations in the centrosomal protein 290 (CEP290) gene. Design: Phase 1b/2 open-label, multicenter, multiple-dose, dose-escalation trial. Participants: A homogeneous subgroup of 5 participants with light perception (LP) vision at the time of enrollment (age range, 15-41 years) selected for detailed analyses. Medical histories of 4 participants were consistent with congenital binocular blindness, whereas 1 participant showed evidence of spatial vision in early life that was later lost. Intervention: Participants received a single intravitreal injection of sepofarsen (160 or 320 µg) into the study eye. Main Outcome Measures: Full-field stimulus testing (FST), visual acuity (VA), and transient pupillary light reflex (TPLR) were measured at baseline and for 3 months after the injection. Results: All 5 participants with LP vision demonstrated severely abnormal FST and TPLR findings. At baseline, FST threshold estimates were 0.81 and 1.0 log cd/m2 for control and study eyes, respectively. At 3 months, study eyes showed a large mean improvement of -1.75 log versus baseline (P < 0.001), whereas untreated control eyes were comparable with baseline. Blue minus red FST values were not different than 0 (P = 0.59), compatible with cone mediation of remnant vision. At baseline, TPLR response amplitude and latency estimates were 0.39 mm and 0.72 seconds, respectively, for control eyes, and 0.28 mm and 0.78 seconds, respectively, for study eyes. At 3 months, study eyes showed a mean improvement of 0.44 mm in amplitude and a mean acceleration of 0.29 seconds in latency versus baseline (P < 0.001), whereas control eyes showed no significant change versus baseline. Specialized tests performed in 1 participant confirmed and extended the standardized results from all 5 participants. Conclusions: By subjective and objective evidence, intravitreal sepofarsen provides improvement of light sensitivity for individuals with LP vision. However, translation of increased light sensitivity to improved spatial vision may occur preferentially in those with a history of visual experience during early neurodevelopment. Interventions for congenital lack of spatial vision in CEP290-associated Leber congenital amaurosis may lead to better results if performed before visual cortex maturity.

14.
iScience ; 25(10): 105274, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36274938

ABSTRACT

Signaling of vision to the brain starts with the retinal phototransduction cascade which converts visible light from the environment into chemical changes. Vision impairment results when mutations inactivate proteins of the phototransduction cascade. A severe monogenically inherited blindness, Leber congenital amaurosis (LCA), is caused by mutations in the GUCY2D gene, leading to a molecular defect in the production of cyclic GMP, the second messenger of phototransduction. We studied two patients with GUCY2D-LCA who were undergoing gene augmentation therapy. Both patients had large deficits in rod photoreceptor-based night vision before intervention. Within days of therapy, rod vision in both patients changed dramatically; improvements in visual function and functional vision in these hyper-responding patients reached more than 3 log10 units (1000-fold), nearing healthy rod vision. Quick activation of the complex molecular pathways from retinal photoreceptor to visual cortex and behavior is thus possible in patients even after being disabled and dormant for decades.

15.
Optom Vis Sci ; 99(11): 807-816, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36287139

ABSTRACT

SIGNIFICANCE: There is a reduction in corneal nerve fiber density and length in type 2 diabetes mellitus with chronic kidney disease compared with type 2 diabetes mellitus alone; however, this difference does not result in worse ocular surface discomfort or dry eye disease. PURPOSE: This study aimed to determine the clinical impact of corneal nerve loss on ocular surface discomfort and markers of ocular surface homeostasis in people with type 2 diabetes mellitus without chronic kidney disease (T2DM-no CKD) and those with type 2 diabetes mellitus with concurrent chronic kidney disease (T2DM-CKD). METHODS: Participants were classified based on estimated glomerular filtration rates into two groups: T2DM-CKD (n = 27) and T2DM-no CKD (n = 28). RESULTS: There was a significant difference between the T2DM-CKD and T2DM-no CKD groups in corneal nerve fiber density (14.9 ± 8.6 and 21.1 ± 7.1 no./mm 2 , respectively; P = .005) and corneal nerve fiber length (10.0 ± 4.6 and 12.3 ± 3.7 mm/mm 2 , respectively; P = .04). Fluorescein tear breakup time was significantly reduced in T2DM-CKD compared with T2DM-no CKD (8.1 ± 4.4 and 10.7 ± 3.8 seconds, respectively; P = .01), whereas ocular surface staining was not significantly different (3.5 ± 1.7 and 2.7 ± 2.3 scores, respectively; P = .12). In terms of ocular surface discomfort, there were no significant differences in the ocular discomfort score scores (12.5 ± 11.1 and 13.6 ± 12.1, respectively; P = .81) and Ocular Pain Assessment Survey scores (3.3 ± 5.4 and 4.3 ± 6.1, respectively; P = .37) between the T2DM-CKD and T2DM-no CKD. CONCLUSIONS: The current study demonstrated that corneal nerve loss is greater in T2DM-CKD than in T2DM-no CKD. However, these changes do not impact ocular surface discomfort or markers of ocular surface homeostasis.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Renal Insufficiency, Chronic , Humans , Diabetes Mellitus, Type 2/complications , Cornea , Renal Insufficiency, Chronic/complications , Nerve Fibers
16.
Exp Eye Res ; 224: 109253, 2022 11.
Article in English | MEDLINE | ID: mdl-36165925

ABSTRACT

Neurotoxic chemotherapy has been shown to be associated with reduced corneal nerves and ocular surface discomfort. Substance P is a neuropeptide expressed by sensory nerves including those in the densely innervated cornea. It is involved in both pain signaling and the regulation of epithelial and neural health. While its levels in tear fluids have been used as a neuropathic biomarker in diabetes, investigations of tear concentrations of substance P in chemotherapy-induced peripheral neuropathy have not been explored. The current cross-sectional study assessed substance P expression in tears of patients following neurotoxic chemotherapy treatment. Patients treated with paclitaxel (n = 35) or oxaliplatin (n = 30) 3-24 months prior to assessment were recruited along with healthy controls (n = 25). Flush tear collection, in-vivo corneal confocal microscopy and neurotoxicity assessments were also conducted. Enzyme-linked immunosorbent assays were used to measure substance P concentrations in collected tears, while total protein content (TPC) was measured with the bicinchoninic acid method (BCA). General linear models were used for statistical analysis. Substance P concentration was reduced in paclitaxel-treated patients [Median (Interquartile range, IQR): 1.11 (0.20-2.24) ng/ml)] compared to the oxaliplatin group [4.28 (1.01-10.73) ng/ml, p = 0.02]. Substance P expressed as a proportion of TPC was also lower in the paclitaxel group [0.00006 (0.00001-0.00010) %] compared to the oxaliplatin group [0.00018 (0.00008-0.00040) %, p = 0.005]. Substance P concentration and its percentage in TPC were also reduced in the paclitaxel group when compared to healthy controls [4.61 (1.35-18.51) ng/ml, p = 0.02; 0.00020 (0.00006-0.00060) %, p = 0.04, respectively]. Higher cumulative dose of paclitaxel was correlated with a reduction in substance P concentrations (r = -0.40, p = 0.037), however no associations were found with corneal nerve parameters or neuropathy severity (p > 0.05). While these findings show evidence for the dysregulation of tear film substance P following paclitaxel treatment, longitudinal studies should be conducted to investigate how substance P levels in tears change during treatment.


Subject(s)
Antineoplastic Agents , Paclitaxel , Substance P , Humans , Antineoplastic Agents/adverse effects , Biomarkers/analysis , Cornea/metabolism , Cross-Sectional Studies , Oxaliplatin/adverse effects , Paclitaxel/adverse effects , Substance P/analysis , Tears/chemistry
17.
Cornea ; 41(12): 1487-1494, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36155558

ABSTRACT

PURPOSE: The aim of this study was to investigate the reliability of subbasal corneal nerve plexus parameters of the inferior whorl compared with the central cornea with in vivo corneal confocal microscopy and to investigate the impact of inferior whorl pattern complexity on reproducibility. METHODS: Subbasal corneal nerves of healthy controls (n = 10) and patients with chemotherapy-induced peripheral neuropathy (n = 10) were imaged with a laser scanning confocal microscope. Two masked, experienced observers and the original image taker were tasked with selecting representative images of the central cornea and inferior whorl for each participant. This was conducted on 2 occasions 1 week apart. Corneal nerve fiber length (CNFL) and fractal dimension (CNFrD) [central cornea: CNFL and CNFrD; inferior whorl region: inferior whorl length (IWL) and inferior whorl fractal dimension (IWFrD)] were analyzed. Intraclass correlation coefficient (ICC) was analyzed for interobserver and intraobserver reliability. Inferior whorl complexity was classified according to the ease of identification of the center point of convergence. RESULTS: Interobserver ICC was 0.992 for CNFL, 0.994 for CNFrD, 0.980 for IWL, and 0.954 for IWFrD. When analyzed by inferior whorl complexity, the interobserver reliability was similar for simple (0.987 for IWL; 0.960 for IWFrD) and complex patterns (0.967 for IWL; 0.949 for IWFrD). However, intraobserver ICC were reduced for complex (IWL 0.841-0.970; IWFrD 0.830-0.955) compared with simple patterns (IWL 0.931-0.970; IWFrD 0.921-0.969). CONCLUSIONS: Although the overall interobserver reliability was excellent for the central corneal and inferior whorl parameters, there was lower intraobserver reliability for the inferior whorl parameters for complex morphological patterns. To improve reliability, more sophisticated wide-field imaging of the inferior whorl may be needed.


Subject(s)
Cornea , Nerve Fibers , Humans , Reproducibility of Results , Cornea/diagnostic imaging , Cornea/innervation , Nerve Fibers/physiology , Microscopy, Confocal/methods , Health Status
18.
Eur J Neurol ; 29(12): 3571-3579, 2022 12.
Article in English | MEDLINE | ID: mdl-36039540

ABSTRACT

BACKGROUND AND PURPOSE: Nerve conduction studies (NCS) are the current objective measure for diagnosis of peripheral neuropathy in type 2 diabetes but do not assess nerve structure. This study investigated the utility of peripheral nerve ultrasound as a marker of the presence and severity of peripheral neuropathy in type 2 diabetes. METHODS: A total of 156 patients were recruited, and nerve ultrasound was undertaken on distal tibial and distal median nerves. Neuropathy severity was graded using the modified Toronto Clinical Neuropathy Scale (mTCNS) and Total Neuropathy Score (TNS). Studies were undertaken by a single ultrasonographer blinded to nerve conduction results. RESULTS: A stepwise increase in tibial nerve cross-sectional area (CSA) was noted with increasing TNS grade (p < 0.001) and each mTCNS quartile (p < 0.001). Regression analysis demonstrated a correlation between tibial nerve CSA and neuropathy severity (p < 0.001). Using receiver operator curve analysis, tibial nerve CSA of >12.88 mm yielded a sensitivity of 70.5% and specificity of 85.7% for neuropathy detection. Binary logistic regression revealed that tibial nerve CSA was a predictor of abnormal sural sensory nerve action potential amplitude (odds ratio = 1.239, 95% confidence interval [CI] = 1.142-1.345) and abnormal neuropathy score (odds ratio = 1.537, 95% confidence interval [CI] = 1.286-1.838). CONCLUSIONS: Tibial nerve ultrasound has good specificity and sensitivity for neuropathy diagnosis in type 2 diabetes. The study demonstrates that tibial nerve CSA correlates with neuropathy severity. Future serial studies using both ultrasound and NCS may be useful in determining whether changes in ultrasound occur prior to development of nerve conduction abnormalities and neuropathic symptoms.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Diabetic Neuropathies/diagnosis , Neural Conduction/physiology , Peripheral Nerves/diagnostic imaging , Tibial Nerve , Ultrasonography
19.
BMC Ophthalmol ; 22(1): 266, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35701753

ABSTRACT

BACKGROUND: Inherited retinal degenerations (IRDs) affect daylight and night vision to different degrees. In the current work, we devise a method to quantify mobility under dark-adapted conditions in patients with severe childhood blindness due to Leber congenital amaurosis (LCA). Mobility thresholds from two different LCA genotypes are compared to dark-adapted vision measurements using the full-field stimulus test (FST), a conventional desktop outcome measure of rod vision. METHODS: A device consisting of vertical LED strips on a plane resembling a beaded curtain was programmed to produce a rectangular pattern target defining a 'door' of varying luminance that could appear at one of three positions. Mobility performance was evaluated by letting the subject walk from a fixed starting position ~ 4 m away from the device with instructions to touch the door. Success was defined as the subject touching within the 'door' area. Ten runs were performed and the process was repeated for different levels of luminance. Tests were performed monocularly in dark-adapted and dilated eyes. Results from LCA patients with the GUCY2D and CEP290 genotypes and normal subjects were analyzed using logistic regression to estimate the mobility threshold for successful navigation. The relation of thresholds for mobility, FST and visual acuity were quantified using linear regression. RESULTS: Normal subjects had mobility thresholds near limits of dark-adapted rod vision. GUCY2D-LCA patients had a wide range of mobility thresholds from within 1 log of normal to greater than 8 log abnormal. CEP290-LCA patients had abnormal mobility thresholds that were between 5 and 6 log from normal. Sensitivity loss estimates using FST related linearly to the mobility thresholds which were not correlated with visual acuity. CONCLUSIONS: The mobility task we developed can quantify functional vision in severely disabled patients with LCA. Taken together with other outcome measures of rod and cone photoreceptor-mediated vision, dark-adapted functional vision should provide a more complete understanding of the natural history and effects of treatment in patients with LCA.


Subject(s)
Leber Congenital Amaurosis , Retinal Degeneration , Antigens, Neoplasm/genetics , Cell Cycle Proteins/genetics , Child , Cytoskeletal Proteins/genetics , Dark Adaptation , Humans , Leber Congenital Amaurosis/diagnosis , Leber Congenital Amaurosis/genetics , Mutation , Retinal Cone Photoreceptor Cells , Vision, Ocular
20.
Clin Exp Optom ; 105(5): 487-493, 2022 07.
Article in English | MEDLINE | ID: mdl-35772934

ABSTRACT

CLINICAL RELEVANCE: There is potential benefit in analysing corneal nerve tortuosity as a marker for assessment and progression of systemic diabetic neuropathy. BACKGROUND: The aim of this work was to determine whether tortuosity significantly differs in participants with type 1 (T1DM) and type 2 (T2DM) diabetes compared to controls and whether tortuosity differed according to neuropathy status. METHODS: Corneal nerves of 164 participants were assessed across T1DM, T2DM and control groups. Images of corneal nerves were captured via in vivo corneal confocal microscopy. Diabetic neuropathy status was examined using the Total Neuropathy Score (TNS). Tortuosity was assessed with Cfibre v0.097. Results were compared between groups with a linear mixed model accounting for location of image and controlling for age, producing Tortuosity Factor (TF), an estimate of the marginal means of each group. RESULTS: Tortuosity was significantly reduced in the T1DM group compared to controls (TF = 0.241, 95%CI = 0.225-0.257 vs. TF = 0.272, 95%CI = 0.252-0.292; mean difference = -0.031, p = 0.02) and in the T2DM group compared to controls (TF = 0.261, 95%CI = 0.244-0.278 vs. TF = 0.289, 95%CI = 0.270-0.308; mean difference = -0.029, p = 0.03). Tortuosity did not significantly differ between participants with T1DM and T2DM accounting for age and TNS (TF = 0.240, 95%CI = 0.215-0.265 vs. 0.269, 95%CI = 0.244-0.293, mean difference = -0.029, p = 0.11). Tortuosity was significantly reduced in participants with neuropathy (TNS≥2) compared to participants with no neuropathy (TNS< 2) (TF = 0.248, 95%CI = 0.231-0.265 vs. TF = 0.272, 95%CI = 0.260-0.283; mean difference = -0.024, p = 0.03). CONCLUSIONS: Tortuosity is significantly reduced in participants with T1DM and T2DM compared to age matched controls and in participants with neuropathy compared to those without neuropathy.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Cornea , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/etiology , Humans , Microscopy, Confocal/methods , Nerve Fibers
SELECTION OF CITATIONS
SEARCH DETAIL
...