Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
Med Oncol ; 41(6): 140, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713310

ABSTRACT

Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.


Subject(s)
Brain Neoplasms , Cannabidiol , Glioblastoma , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Cannabidiol/pharmacology , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Stress Granules/metabolism , Stress Granules/drug effects , Cell Line, Tumor , Eukaryotic Initiation Factor-2/metabolism
2.
Cureus ; 16(3): e55515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38576631

ABSTRACT

Gallbladder cancer (GBC) stands out as one of the most widespread malignancies impacting the biliary tract globally. Despite increasing interest, to the best of our knowledge, no meta-analysis has been undertaken to amalgamate the existing data concerning the prognostic significance of micro-RNAs (miRNAs) in GBC in comparison to studies on miRNAs in other cancers. Hence, this systematic review and meta-analysis aimed at determining the prognostic significance of miRNAs in GBC patients. Comprehensive literature searches were conducted across PubMed, Cochrane Library, Ovid, Scopus, and Science Direct databases. Studies that evaluated the association between miRNAs and overall survival in GBC patients were included. Random-effect meta-analysis was employed to pool hazard ratios (HRs) and their 95% confidence intervals (CIs) across studies. A total of 15 studies, encompassing 16 miRs, were included for our analysis. The pooled analysis revealed that a high expression of miR-204, miR-7-2-3p, miR-29c-3p, miR-125b, miR-20a, miR-139-5p, miR-141, miR-92b-3p, miR-335, and miR-372 was significantly associated with poor prognosis and increased risk (HR>1 and the upper bound of the 95% CI>1). Additionally, these miRNAs were associated with the overall survival (HR = 1.56, 95% CI = 0.91-2.20, I2 = 91.82%). Significant heterogeneity was observed and could be attributed to the limited number of studies available on the GBC and significant reliance on quantitative real-time PCR for the detection of miRNAs. In conclusion, specific miRNAs exhibit prognostic significance in GBC, with potential implications for patient stratification and targeted therapeutic interventions. However, due to the heterogeneity among studies, these findings should be interpreted cautiously and validated in larger cohorts.

3.
Radiol Phys Technol ; 17(1): 230-237, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38170346

ABSTRACT

An accurate and reliable patient-specific quality assurance (PSQA) is crucial to ensure the safety and precision of Stereotactic body radiation therapy (SBRT) in treating Hepatocellular carcinoma (HCC). This study examines the effectiveness of a novel hybrid 3D-printed hybrid coaxial cylindrical phantom for PSQA in the SBRT of HCC. The study compared three different point dose verification techniques for PSQA: a traditional solid water phantom, two dimensional detector array I'MatriXX, and a newly developed hybrid 3D-printed phantom. Thirty SBRT HCC liver cases were examined using these techniques, and point doses were measured and compared to planned doses using the perpendicular composite method with solid water and I'MatriXX phantoms. Unlike the other two methods, the point dose was compared in true composite geometry using the hybrid 3D-printed phantom, which enhanced the accuracy and consistency of PSQA. The study aims to assess the statistical significance and accuracy of the hybrid 3D-printed phantom compared to other methods. The results showed all techniques complied with the institutional threshold criteria of within ± 3% for point-dose measurement discrepancies. The hybrid 3D-printed phantom was found to have better consistency with a lower standard deviation than traditional methods. Statistical analysis using Student's t-test revealed the statistical significance of the hybrid 3D-printed phantom technique in patient-specific point-dose assessments with a p-value < 0.01. The hybrid 3D-printed phantom developed institutionally is cost-effective and easy to handle. It has been proven to be a valuable tool for PSQA in SBRT for the treatment of HCC and has demonstrated its practicality and reliability.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Radiosurgery , Humans , Radiosurgery/methods , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/radiotherapy , Reproducibility of Results , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Printing, Three-Dimensional , Water , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage
4.
Transl Stroke Res ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38091188

ABSTRACT

Ischemic stroke is caused by obstructed cerebral blood flow, which results in neurological injury and poor outcomes. Pro-inflammatory signaling from both residential and infiltrating immune cells potentiates cerebral injury and worsens patient outcomes after stroke. While the occurrence of a stroke exhibits a time-of-day-dependent pattern, it remains unclear whether disrupted circadian rhythms modulate post-stroke immunity. In this study, we hypothesized that stroke timing differentially affects immune activation in mice. Following middle cerebral artery occlusion (MCAO), circadian genes BMAL1, CLOCK, Cry1, and Cry2 elevated at ZT06, with a significant difference between ZT06 and ZT18. Conversely, expression of the negative limb circadian clock gene, Per1, decreased at ZT06 and ZT18 in stroke mice compared to sham. Paralleling these circadian gene expression changes, we observed a significant increase in TNF-α and a decrease in IL-10 expression at 48 h post-MCAO, when the procedure was performed at ZT06 (MCAO-ZT6), which corresponds to a deep sleep period, as compared to when the stroke was induced at ZT12 (MCAO-ZT12), ZT18 (MCAO-ZT18), or ZT0 (MCAO-ZT12). Similarly, increased pro-inflammatory, decreased anti-inflammatory monocytes, and increased NLRP3 were observed in blood, while changes in the expression of CD11b and Iba1 were noted within brain tissue at 48 h of MCAO-ZT06, as compared to MCAO-ZT18. Consistent with the increased immune response, infarct volume and sensorimotor deficits were greater in MCAO-ZT06 mice compared to MCAO-ZT18 mice at 48 h. Finally, we found reduced weight and length of the spleen while splenocytes showed significant time-dependent changes in Tregs, Bregs, and monocytes in MCAO-ZT06 mice. Taken together, this study demonstrates that circulating and splenic immune responses following ischemic stroke exhibit a circadian expression pattern which may contribute to time-of-day-dependent stroke outcomes.

5.
Sci Rep ; 13(1): 19101, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37925508

ABSTRACT

Gallbladder cancer (GBC) is a lethal disease with surgical resection as the only curative treatment. However, many patients are ineligible for surgery, and current adjuvant treatments exhibit limited effectiveness. Next-generation sequencing has improved our understanding of molecular pathways in cancer, sparking interest in microRNA-based gene regulation. The aim of the study is to identify dysregulated miRNAs in GBC and investigate their potential as therapeutic tools for effective and targeted treatment strategies. GBC and control tissue samples were sequenced for miRNA expression using the Illumina HiSeq platform. Biological processes and related pathways were determined using the Panther and Gene Ontology databases. 439 significantly differentially expressed miRNAs were identified; 19 of them were upregulated and 29 were downregulated. Key enriched biological processes included immune cell apoptosis, endoplasmic reticulum (ER) overload response, and negative regulation of the androgen receptor (AR) signaling pathway. Panther analysis revealed the insulin-like growth factor (IGF)-mitogen activated protein kinases (MAPK) cascade, p38 MAPK pathway, p53 pathway, and FAS (a subgroup of the tumor necrosis factor receptor) signaling pathway as highly enriched among dysregulated miRNAs. Kirsten rat sarcoma virus (KRAS), AR, and interferon gamma (IFN-γ) pathways were identified among the key pathways potentially amenable to targeted therapy. We concluded that a combination approach involving miRNA-based interventions could enhance therapeutic outcomes. Our research emphasizes the importance of precision medicine, targeting pathways using sense and anti-sense miRNAs as potential therapies in GBC.


Subject(s)
Carcinoma in Situ , Gallbladder Neoplasms , MicroRNAs , Humans , MicroRNAs/metabolism , Gallbladder Neoplasms/pathology , High-Throughput Nucleotide Sequencing , Signal Transduction/genetics , Mitogen-Activated Protein Kinases/metabolism
6.
Mol Neurobiol ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37817031

ABSTRACT

The pandemic COVID-19 (coronavirus disease 2019) is caused by the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), which devastated the global economy and healthcare system. The infection caused an unforeseen rise in COVID-19 patients and increased the mortality rate globally. This study gives an overall idea about host-pathogen interaction, immune responses to COVID-19, recovery status of infection, targeted organs and complications associated, and comparison of post-infection immunity in convalescent subjects and non-infected individuals. The emergence of the variants and episodes of COVID-19 infections made the situation worsen. The timely introduction of vaccines and precautionary measures helped control the infection's severity. Later, the population that recovered from COVID-19 grew significantly. However, understanding the impact of healthcare issues resulting after infection is paramount for improving an individual's health status. It is now recognised that COVID-19 infection affects multiple organs and exhibits a broad range of clinical manifestations. So, post COVID-19 infection creates a high risk in individuals with already prevailing health complications. The identification of post-COVID-19-related health issues and their appropriate management is of greater importance to improving patient's quality of life. The persistence, sequelae and other medical complications that normally last from weeks to months after the recovery of the initial infection are involved with COVID-19. A multi-disciplinary approach is necessary for the development of preventive measures, techniques for rehabilitation and strategies for clinical management when it comes to long-term care.

7.
Cancer Treat Res Commun ; 36: 100750, 2023.
Article in English | MEDLINE | ID: mdl-37531735

ABSTRACT

The global health landscape has experienced a shift towards non-communicable diseases, with cardiovascular diseases and cancer as leading causes of mortality. Although advancements in healthcare have led to an increase in life expectancy, they have concurrently resulted in a greater burden of chronic health conditions. Unintended consequences of anticancer therapies on various tissues, particularly the cardiovascular system, contribute to elevated morbidity and mortality rates that are not directly attributable to cancer. Consequently, the field of cardio-oncology has emerged to address the prevalence of CVD in cancer survivors and the cardiovascular toxicity associated with cancer therapies. Non-coding RNAs (ncRNAs) have been found to play a crucial role in early diagnosis, prognosis, and therapeutics within the realm of cardio-oncology. This comprehensive review evaluates the risk assessment of cancer survivors concerning the acquisition of adverse cardiovascular consequences, investigates the association of ncRNAs with CVD in patients undergoing cancer treatment, and delves into the role of ncRNAs in the diagnosis, treatment, and prevention of CVD in patients with a history of anti-cancer therapy. A thorough understanding of the pathogenesis of cancer therapy-related cardiovascular disease and the involvement of ncRNAs in cardio-oncology will enable healthcare professionals to provide anticancer treatment with minimized cardiovascular side effects, thereby improving patient outcomes. Ultimately, this comprehensive analysis aims to provide valuable insights into the complex interplay between cancer and cardiovascular diseases, facilitating the development of more effective diagnostic, therapeutic, and preventive strategies in the burgeoning field of cardio-oncology.


Subject(s)
Cardiovascular Diseases , Drug-Related Side Effects and Adverse Reactions , Neoplasms , Humans , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/genetics , Cardiotoxicity/etiology , Cardiotoxicity/diagnosis , Cardiotoxicity/prevention & control , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/epidemiology , Medical Oncology
8.
Front Neurosci ; 17: 1227705, 2023.
Article in English | MEDLINE | ID: mdl-37575310

ABSTRACT

Introduction: Chronic neuroinflammation can exist for months to years following traumatic brain injury (TBI), although the underlying mechanisms remain poorly understood. Methods: In the current study, we used a controlled cortical impact mouse model of TBI to examine whether proinflammatory senescent cells are present in the brain long-term (months) after TBI and whether ablation of these cells via administration of senolytic drugs can improve long-term functional outcome after TBI. The results revealed that astrocytes and microglia in the cerebral cortex, hippocampus, corpus callosum and lateral posterior thalamus colocalized the senescent cell markers, p16Ink4a or p21Cip1/Waf1 at 5 weeks post injury (5wpi) and 4 months post injury (4mpi) in a controlled cortical impact (CCI) model. Intermittent administration of the senolytic drugs, dasatinib and quercetin (D + Q) beginning 1-month after TBI for 13 weeks significantly ablated p16Ink4a-positive- and p21Cip1/Waf1-positive-cells in the brain of TBI animals, and significantly reduced expression of the major senescence-associated secretory phenotype (SASP) pro-inflammatory factors, interleukin-1ß and interleukin-6. Senolytic treatment also significantly attenuated neurodegeneration and enhanced neuron number at 18 weeks after TBI in the ipsilateral cortex, hippocampus, and lateral posterior thalamus. Behavioral testing at 18 weeks after TBI further revealed that senolytic therapy significantly rescued defects in spatial reference memory and recognition memory, as well as depression-like behavior in TBI mice. Discussion: Taken as a whole, these findings indicate there is robust and widespread induction of senescent cells in the brain long-term after TBI, and that senolytic drug treatment begun 1-month after TBI can efficiently ablate the senescent cells, reduce expression of proinflammatory SASP factors, reduce neurodegeneration, and rescue defects in reference memory, recognition memory, and depressive behavior.

9.
Cureus ; 15(5): e39018, 2023 May.
Article in English | MEDLINE | ID: mdl-37378223

ABSTRACT

BACKGROUND: Leptin has been proposed to be a link between obesity and the increased incidence of various cancers like breast cancer, colon cancer, gastric cancer, etc. The role of leptin in gallbladder cancer is largely undetermined. Moreover, no study has evaluated serum leptin levels and their correlation with clinicopathological characteristics and serum tumour markers in gallbladder cancer (GBC). Therefore, the present study was planned. METHODS: A cross-sectional study was conducted in a tertiary care hospital in Northern India after obtaining ethical approval from the institution. Forty GBC patients staged as per American Joint Committee on Cancer (AJCC) 8th staging system were recruited along with 40 healthy controls. Serum leptin was assayed by sandwich enzyme-linked immunosorbent assay (ELISA) and tumour markers (CA19-9, CEA and CA125) by Chemiluminescence. ROC, Mann Whitney U test, Linear regression and Spearman correlation was performed using Statistical Product and Service Solutions (SPSS) (IBM SPSS Statistics for Windows, Version 25.0, Armonk, NY). BMI was also assessed for both groups. RESULTS: Median BMI for GBC patients was 19.46 (IQR 17.61-22.36). Median serum leptin levels were significantly lower (2.09 (IQR 1.01-7.76) ng/mL) in GBC patients as compared to controls (12.32 (IQR 10.50-14.72) ng/mL). AUC was 0.84 with 100% sensitivity and 75% specificity at 7.57 ng/mL. Serum leptin was not associated with cancer stage, resectability, metastasis, liver infiltration, or tumour markers on linear regression (p=0.74, adjusted R square = -0.07). A significant positive correlation was found between BMI and serum leptin in GBC patients (p=0.00). CONCLUSIONS: Lower BMI and relatively lean presentation of GBC patients may account for low serum leptin levels.

10.
J Thromb Haemost ; 21(9): 2473-2484, 2023 09.
Article in English | MEDLINE | ID: mdl-37196848

ABSTRACT

BACKGROUND: Respiratory failure is the primary cause of death in patients with COVID-19, whereas coagulopathy is associated with excessive inflammation and multiorgan failure. Neutrophil extracellular traps (NETs) may exacerbate inflammation and provide a scaffold for thrombus formation. OBJECTIVES: The goal of this study was to determine whether degradation of NETs by recombinant human DNase-I (rhDNase), a safe, Food and Drug Administration-approved drug, reduces excessive inflammation, reverses aberrant coagulation, and improves pulmonary perfusion after experimental acute respiratory distress syndrome (ARDS). METHODS: Intranasal poly(I:C), a synthetic double-stranded RNA, was administered to adult mice for 3 consecutive days to simulate a viral infection, and these subjects were randomized to treatment arms, which received either an intravenous placebo or rhDNase. The effects of rhDNase on immune activation, platelet aggregation, and coagulation were assessed in mice and donor human blood. RESULTS: NETs were observed in bronchoalveolar lavage fluid and within regions of hypoxic lung tissue after experimental ARDS. The administration of rhDNase mitigated peribronchiolar, perivascular, and interstitial inflammation induced by poly(I:C). In parallel, rhDNase degraded NETs, attenuated platelet-NET aggregates, reduced platelet activation, and normalized the clotting time to improve regional perfusion, as observed using gross morphology, histology, and microcomputed tomographic imaging in mice. Similarly, rhDNase reduced NETs and attenuated platelet activation in human blood. CONCLUSION: NETs exacerbate inflammation and promote aberrant coagulation by providing a scaffold for aggregated platelets after experimental ARDS. Intravenous administration of rhDNase degrades NETs and attenuates coagulopathy in ARDS, providing a promising translational approach to improve pulmonary structure and function after ARDS.


Subject(s)
COVID-19 , Extracellular Traps , Respiratory Distress Syndrome , Adult , Humans , Animals , Mice , Extracellular Traps/metabolism , COVID-19/metabolism , Respiratory Distress Syndrome/drug therapy , Inflammation/metabolism , Neutrophils/metabolism
11.
Neurobiol Dis ; 180: 106090, 2023 05.
Article in English | MEDLINE | ID: mdl-36934795

ABSTRACT

Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.


Subject(s)
Brain Injuries, Traumatic , Cognitive Aging , Humans , Cellular Senescence , Brain Injuries, Traumatic/complications , Inflammation
12.
J Phys Condens Matter ; 35(18)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36854195

ABSTRACT

Analysis on very detailed measurements of resistivity (ρ) and thermoelectric power (S) of magnetic impurity (Co) substituted iron silicide (FeSi) has been presented in this report. The impurity valence electrons of Co dominate the whole physical properties at low temperatures below 35 K, below the critical concentrationxc(≈0.02). The negative thermopower and the positive slope in the resistivity at low temperatures are exciting and show that the system is not entirely insulator below the critical concentration of metal-insulator transition (xc). So, due to the external impurity electrons, the system's magnetic ground state could change considerably compared to the parent compound FeSi. This report may help unveil the interesting low-temperature transport properties betweenx= 0 andx= 0.04 (Fe1-xCoxSi). Two band model and variable range hopping model were employed to explain the low-temperature electrical and thermal transport properties.

13.
Exp Neurol ; 361: 114320, 2023 03.
Article in English | MEDLINE | ID: mdl-36627040

ABSTRACT

Endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)], endogenously produced arachidonate-based lipids, are anti-inflammatory physiological ligands for two known cannabinoid receptors, CB1 and CB2, yet the molecular and cellular mechanisms underlying their effects after brain injury are poorly defined. In the present study, we hypothesize that traumatic brain injury (TBI)-induced loss of endocannabinoids exaggerates neurovascular injury, compromises brain-cerebrospinal fluid (CSF) barriers (BCB) and causes behavioral dysfunction. Preliminary analysis in human CSF and plasma indicates changes in endocannabinoid levels. This encouraged us to investigate the levels of endocannabinoid-metabolizing enzymes in a mouse model of controlled cortical impact (CCI). Reductions in endocannabinoid (2-AG and AEA) levels in plasma were supported by higher expression of their respective metabolizing enzymes, monoacylglycerol lipase (MAGL), fatty acid amide hydrolase (FAAH), and cyclooxygenase 2 (Cox-2) in the post-TBI mouse brain. Following increased metabolism of endocannabinoids post-TBI, we observed increased expression of CB2, non-cannabinoid receptor Transient receptor potential vanilloid-1 (TRPV1), aquaporin 4 (AQP4), ionized calcium binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and acute reduction in cerebral blood flow (CBF). The BCB and pericontusional cortex showed altered endocannabinoid expressions and reduction in ventricular volume. Finally, loss of motor functions and induced anxiety behaviors were observed in these TBI mice. Taken together, our findings suggest endocannabinoids and their metabolizing enzymes play an important role in the brain and BCB integrity and highlight the need for more extensive studies on these mechanisms.


Subject(s)
Antineoplastic Agents , Brain Injuries, Traumatic , Brain Injuries , Mice , Humans , Animals , Endocannabinoids/metabolism , Brain/metabolism , Brain Injuries, Traumatic/complications , Receptor, Cannabinoid, CB1/metabolism
14.
Cannabis Cannabinoid Res ; 8(5): 824-834, 2023 10.
Article in English | MEDLINE | ID: mdl-34918964

ABSTRACT

Introduction: Glioblastoma (GBM) is the most common invasive brain tumor composed of diverse cell types with poor prognosis. The highly complex tumor microenvironment (TME) and its interaction with tumor cells play important roles in the development, progression, and durability of GBM. Angiogenic and immune factors are two major components of TME of GBM; their interplay is a major determinant of tumor vascularization, immune profile, as well as immune unresponsiveness of GBM. Given the ineffectiveness of current standard therapies (surgery, radiotherapy, and concomitant chemotherapy) in managing patients with GBM, it is necessary to develop new ways of treating these lethal brain tumors. Targeting TME, altering tumor ecosystem may be a viable therapeutic strategy with beneficial effects for patients in their fight against GBM. Materials and Methods: Given the potential therapeutic effects of cannabidiol (CBD) in a wide spectrum of diseases, including malignancies, we tested, for the first time, whether inhalant CBD can inhibit GBM tumor growth using a well-established orthotopic murine model. Optical imaging, histology, immunohistochemistry, and flow cytometry were employed to describe the outcomes such as tumor progression, cancer cell signaling pathways, and the TME. Results: Our findings showed that inhalation of CBD was able to not only limit the tumor growth but also to alter the dynamics of TME by repressing P-selectin, apelin, and interleukin (IL)-8, as well as blocking a key immune checkpoint-indoleamine 2,3-dioxygenase (IDO). In addition, CBD enhanced the cluster of differentiation (CD) 103 expression, indicating improved antigen presentation, promoted CD8 immune responses, and reduced innate Lymphoid Cells within the tumor. Conclusion: Overall, our novel findings support the possible therapeutic role of inhaled CBD as an effective, relatively safe, and easy to administer treatment adjunct for GBM with significant impacts on the cellular and molecular signaling of TME, warranting further research.


Subject(s)
Brain Neoplasms , Cannabidiol , Glioblastoma , Humans , Mice , Animals , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Tumor Microenvironment , Ecosystem , Immunity, Innate , Cell Line, Tumor , Lymphocytes/metabolism , Lymphocytes/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology
16.
Front Neurosci ; 16: 791035, 2022.
Article in English | MEDLINE | ID: mdl-35645722

ABSTRACT

Spontaneous Intracerebral hemorrhage (ICH) is a devastating injury that accounts for 10-15% of all strokes. The rupture of cerebral blood vessels damaged by hypertension or cerebral amyloid angiopathy creates a space-occupying hematoma that contributes toward neurological deterioration and high patient morbidity and mortality. Numerous protocols have explored a role for surgical decompression of ICH via craniotomy, stereotactic guided endoscopy, and minimally invasive catheter/tube evacuation. Studies including, but not limited to, STICH, STICH-II, MISTIE, MISTIE-II, MISTIE-III, ENRICH, and ICES have all shown that, in certain limited patient populations, evacuation can be done safely and mortality can be decreased, but functional outcomes remain statistically no different compared to medical management alone. Only 10-15% of patients with ICH are surgical candidates based on clot location, medical comorbidities, and limitations regarding early surgical intervention. To date, no clearly effective treatment options are available to improve ICH outcomes, leaving medical and supportive management as the standard of care. We recently identified that remote ischemic conditioning (RIC), the non-invasive, repetitive inflation-deflation of a blood pressure cuff on a limb, non-invasively enhanced hematoma resolution and improved neurological outcomes via anti-inflammatory macrophage polarization in pre-clinical ICH models. Herein, we propose a pilot, placebo-controlled, open-label, randomized trial to test the hypothesis that RIC accelerates hematoma resorption and improves outcomes in ICH patients. Twenty ICH patients will be randomized to receive either mock conditioning or unilateral arm RIC (4 cycles × 5 min inflation/5 min deflation per cycle) beginning within 48 h of stroke onset and continuing twice daily for one week. All patients will receive standard medical care according to latest guidelines. The primary outcome will be the safety evaluation of unilateral RIC in ICH patients. Secondary outcomes will include hematoma volume/clot resorption rate and functional outcomes, as assessed by the modified Rankin Scale (mRS) at 1- and 3-months post-ICH. Additionally, blood will be collected for exploratory genomic analysis. This study will establish the feasibility and safety of RIC in acute ICH patients, providing a foundation for a larger, multi-center clinical trial.

17.
Int J Mol Sci ; 23(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35628182

ABSTRACT

Hemoglobin (Hb) is the oxygen transport protein in erythrocytes. In blood, Hb is a tetramer consisting of two Hb-alpha (Hb-α) chains and two Hb-beta (Hb-ß) chains. A number of studies have also shown that Hb-α is also expressed in neurons in both the rodent and human brain. In the current study, we examined for age-related regulation of neuronal Hb-α and hypoxia in the hippocampus and cerebral cortex of intact male and female mice. In addition, to confirm the role and functions of neuronal Hb-α, we also utilized lentivirus CRISPR interference-based Hb-α knockdown (Hb-α CRISPRi KD) in the non-ischemic and ischemic mouse hippocampus and examined the effect on neuronal oxygenation, as well as induction of hypoxia-inducible factor-1α (HIF-1α) and its downstream pro-apoptotic factors, PUMA and NOXA, and on neuronal survival and neurodegeneration. The results of the study revealed an age-related decrease in neuronal Hb-α levels and correlated increase in hypoxia in the hippocampus and cortex of intact male and female mice. Sex differences were observed with males having higher neuronal Hb-α levels than females in all brain regions at all ages. In vivo Hb-α CRISPRi KD in the mouse hippocampus resulted in increased hypoxia and elevated levels of HIF-1α, PUMA and NOXA in the non-ischemic and ischemic mouse hippocampus, effects that were correlated with a significant decrease in neuronal survival and increased neurodegeneration. As a whole, these findings indicate that neuronal Hb-α decreases with age in mice and has an important role in regulating neuronal oxygenation and neuroprotection.


Subject(s)
Hemoglobins , Neurons , Animals , Cerebral Cortex/metabolism , Female , Hemoglobins/metabolism , Hippocampus/metabolism , Hypoxia/metabolism , Male , Mice , Neurons/metabolism
19.
Aquaculture ; 550: 737818, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34924635

ABSTRACT

COVID-19 pandemic presents both a challenge and an opportunity to the Indian shrimp sector. With revitalizing the institutional arrangements and redirecting the focus, the Indian shrimp industry can flourish just by adapting to the needs of the local demand, even when the export prospects are uncertain. This paper takes a historical perspective of Indian shrimp farming and exports and suggests a domestic alternative/supplementary market for Indian farmed shrimp, resulting from COVID-19.

20.
Ageing Res Rev ; 72: 101487, 2021 12.
Article in English | MEDLINE | ID: mdl-34662745

ABSTRACT

Aging is a complex phenomenon associated with a wide spectrum of physical and physiological changes affecting every part of all metazoans, if they escape death prior to reaching maturity. Critical to survival, the immune system evolved as the principal component of response to injury and defense against pathogen invasions. Because how significantly immune system affects and is affected by aging, several neologisms now appear to encapsulate these reciprocal relationships, such as Immunosenescence. The central part of Immunosenescence is Inflammaging -a sustained, low-grade, sterile inflammation occurring after reaching reproductive prime. Once initiated, the impact of Inflammaging and its adverse effects determine the direction and magnitudes of further Inflammaging. In this article, we review the nature of this vicious cycle, we will propose that phytocannabinoids as immune regulators may possess the potential as effective adjunctive therapies to slow and, in certain cases, reverse the pathologic senescence to permit a more healthy aging.


Subject(s)
Cannabinoids , Immunosenescence , Aging , Cannabinoids/adverse effects , Humans , Immune System , Inflammation/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...