Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Pharm Sci ; 113(6): 1536-1545, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38147911

ABSTRACT

In today's context, prolonged exposure to sunlight is widely recognized as a threat to human health, leading to a range of adverse consequences, including skin cancers, premature skin aging, and erythema. To mitigate these risks, preventive actions mainly focus on advocating the application of sunscreen lotions and minimizing direct exposure to sunlight. This research study specifically centered on ensulizole (ENS), a prominent ingredient in sunscreens. The objective was to create inclusion complexes (ICs) with Beta-cyclodextrin (B-CD) and its hydroxypropyl derivatives (H-CD). Using phase solubility measurements, we determined that both B-CD and H-CD form 1:1 stoichiometric ICs with ENS. Proton nuclear magnetic resonance spectral (1H NMR) analysis confirmed that the phenyl portion of ENS is encapsulated within the B-CD cavity. Significant changes in surface morphology were observed during the formation of these ICs compared to ENS and CDs alone. Quantum mechanical calculations were employed to further support the formation of ICs by providing energy data. Particularly, the photostability of the ENS:B-CD ICs remained intact for up to four hours of UV exposure, with no significant alterations in the structure of ENS. Furthermore, comprehensive biocompatibility assessments yielded encouraging results, suggesting the potential application of these inclusion complexes in cosmetics as a UVB sunscreen. In summary, our research underscores the successful creation of inclusion complexes characterized by enhanced photostability and safe biocompatibility.


Subject(s)
Solubility , Sunscreening Agents , beta-Cyclodextrins , Sunscreening Agents/chemistry , beta-Cyclodextrins/chemistry , Humans , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Biocompatible Materials/chemistry , Drug Stability
2.
Molecules ; 28(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175077

ABSTRACT

The loading of drugs or medicinally active compounds has recently been performed using metal-organic frameworks (MOFs), which are thought to be a new type of porous material in which organic ligands and metal ions can self-assemble to form a network structure. The quercetin (QRC) loading and biofilm application on a cyclodextrin-based metal-organic framework via a solvent diffusion approach is successfully accomplished in the current study. The antibacterial plant flavonoid QRC is loaded onto ß-CD-K MOFs to create the composite containing inclusion complexes (ICs) and denoted as QRC:ß-CD-K MOFs. The shifting in the chemical shift values of QRC in the MOFs may be the reason for the interaction of QRC with the ß-CD-K MOFs. The binding energies and relative contents of MOFs are considerably changed after the formation of QRC:ß-CD-K MOFs, suggesting that the interactions took place during the loading of QRC. Confocal laser scanning microscopy (CLSM) showed a reduction in the formation of biofilm. The results of the cell aggregation and hyphal growth are consistent with the antibiofilm activity that is found in the treatment group. Therefore, QRC:ß-CD-K MOFs had no effect on the growth of planktonic cells while inhibiting the development of hyphae and biofilm in C. albicans DAY185. This study creates new opportunities for supramolecular ß-CD-based MOF development for use in biological research and pharmaceutical production.


Subject(s)
Metal-Organic Frameworks , beta-Cyclodextrins , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemistry , Antifungal Agents/pharmacology , Quercetin/pharmacology , beta-Cyclodextrins/pharmacology , Biofilms
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117160, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31176159

ABSTRACT

The interaction of two neutral alkoxy bridged binuclear rhenium(I) complexes, 1 and 2 [{Re(CO)3(1,4-NVP)}2(µ2-OR)2] (1, R = C4H9; 2, R = C10H21; 1,4-NVP = 4-(1-naphthylvinyl)pyridine] with polycyclic aromatic hydrocarbons (PAH) is investigated. UV-vis absorption, emission, 1H NMR spectral titrations, TCSPC lifetime studies and DFT theoretical calculations were carried out to examine the binding responses of complexes 1 and 2 with various PAHs such as pyrene, naphthalene, anthracene and phenanthrene. The UV-Vis absorption spectra showed an increase in absorbance of the metal-to ligand charge-transfer (MLCT) and ligand centered (LC) bands upon addition of various PAH molecules to 1 and 2, whereas the emission behavior was found to show emission quenching, which might occur through energy transfer pathway. The binding constants (K) of complexes 1 and 2 for various PAHs are found to be in the order of 104 M-1 with a 1:1 binding mode, as determined from UV-vis absorption and emission spectral titration studies. 1H NMR spectral studies show that the chemical shifts of pyrene guest and the 1,4-NVP moiety of 2 are shifted up-field, whilst the alkoxy protons do not show any appreciable change in their chemical shifts. It is believed that the open cavities present in the Re(I) complexes may lead to the recognition of PAHs via CH···π interaction.

SELECTION OF CITATIONS
SEARCH DETAIL