Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Pain Res ; 17: 1967-1978, 2024.
Article in English | MEDLINE | ID: mdl-38828088

ABSTRACT

Chronic postsurgical pain (CPSP) affects a significant proportion of children and adolescents after major surgery and is a detriment to both short- and long-term recovery outcomes. While clinical characteristics and psychosocial risk factors for developing CPSP in children and adults are well established in the literature, there has been little progress on the prevention and management of CPSP after pediatric surgery. Limited evidence to support current pharmacologic approaches suggests a fundamentally new paradigm must be considered by clinicians to both conceptualize and address this adverse complication. This narrative review provides a comprehensive evaluation of both the known and emerging mechanisms that support our current understanding of CPSP. Additionally, we discuss the importance of optimizing perioperative analgesic strategies to mitigate CPSP based on individual patient risks. We highlight the importance of postoperative pain trajectories to identify those most at risk for developing CPSP, the early referral to multi-disciplinary pain clinics for comprehensive evaluation and treatment of CPSP, and additional work needed to differentiate CPSP characteristics from other chronic pain syndromes in children. Finally, we recognize ongoing challenges associated with the universal implementation of available knowledge about pediatric CPSP into practically useful care plans for clinicians.

2.
Sci Total Environ ; 898: 165285, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37414159

ABSTRACT

Methylamines are a class of highly reactive organic alkaline gases in the atmosphere. At present, the gridded emission inventories of amines used in the atmospheric numerical model is mostly based on the amine/ammonia ratio method and do not consider the air-sea exchange of methylamines, which oversimplifies the emission scenario. Marine biological emissions (MBE), an important source of methylamines, has been insufficiently investigated. These shortcomings in the inventories can limit the simulation of amines by numerical models in the context of compound pollution in China. To acquire a more complete gridded inventory of amines (monomethylamine (MMA), dimethylamines (DMA), and trimethylamines (TMA)), we established a more reasonable MBE inventory of amines by using multi-source data sets (Sea Surface Temperature (SST), Chlorophyll-a (Chla), Sea Surface Salinity (SSS), NH3 column concentration (NH3), and Wind Speed (WS)), and merged it with the anthropogenic emissions (AE) inventory (by adopting the amine/ammonia ratio method and the Multi-resolution Emission Inventory for China (MEIC)). The new methodology can reveal the air-sea exchange fluxes and direction of different amines. Oceans can act as a sink for DMA and source for TMA while it can be either a source or sink for MMA. The concentration of amines above the coastal area increased significantly when the MBE was merged to the AE inventory. TMA and MMA showed significant increases, TMA increased by 43,917.0 %, and 804.0 %, in July 2015 and December 2019, respectively; while MMA increased by 2635.4 % and 0.37 % during the same periods; however, only slight changes were observed in the DMA concentration (-3.9 % in July 2015, and 1.1 % in December 2019). WS, Chla, and the total dissolved concentration of amines ([C+(s)tot]) were found to be the dominant factors affecting MBE fluxes. In addition, the emission fluxes and spatial distribution of AE, and wet deposition also affect the simulation of amines concentration.

3.
Article in English | MEDLINE | ID: mdl-36498189

ABSTRACT

To understand the temporal variation, spatial distribution and factors influencing the public's sensitivity to air pollution in China, this study collected air pollution data from 2210 air pollution monitoring sites from around China and used keyword-based filtering to identify individual messages related to air pollution and health on Sina Weibo during 2017-2021. By analyzing correlations between concentrations of air pollutants (PM2.5, PM10, CO, NO2, O3 and SO2) and related microblogs (air-pollution-related and health-related), it was found that the public is most sensitive to changes in PM2.5 concentration from the perspectives of both China as a whole and individual provinces. Correlations between air pollution and related microblogs were also stronger when and where air quality was worse, and they were also affected by socioeconomic factors such as population, economic conditions and education. Based on the results of these correlation analyses, scientists can survey public concern about air pollution and related health outcomes on social media in real time across the country and the government can formulate air quality management measures that are aligned to public sensitivities.


Subject(s)
Air Pollutants , Air Pollution , Social Media , Humans , East Asian People , Environmental Monitoring/methods , Air Pollution/analysis , Air Pollutants/analysis , China , Outcome Assessment, Health Care , Particulate Matter/analysis
4.
Environ Pollut ; 305: 119254, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35390419

ABSTRACT

Mitigation of ambient ozone (O3) pollution is a great challenge because it depends heavily on the background O3 which has been poorly evaluated in many regions, including in China. By establishing the relationship between O3 and air temperature near the surface, the mean background O3 mixing ratios in the clean and polluted seasons were determined to be 35-40 and 50-55 ppbv in China during 2013-2019, respectively. Simulations using the chemical transport model (i.e., the Weather Research and Forecasting coupled with Chemistry model, WRF/Chem) suggested that biogenic volatile organic compounds (VOC) emissions were the primary contributor to the increase in the background O3 in the polluted season (BOP) compared to the background O3 in the clean season (BOC), ranging from 8 ppbv to 16 ppbv. More importantly, the BOP continuously increased at a rate of 0.6-8.0 ppbv yr-1 during 2013-2019, while the non-BOP stopped increasing after 2017. Consequently, an additional 2%-16% reduction in anthropogenic VOC emissions is required to reverse the current O3 back to that measured in the period from 2013 to 2017. The results of this study emphasize the importance of the relative contribution of the background O3 to the observed total O3 concentration in the design of anthropogenic precursor emission control strategies for the attainment of O3 standards.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution/prevention & control , China , Environmental Monitoring/methods , Ozone/analysis , Volatile Organic Compounds/analysis
5.
Sci Total Environ ; 824: 153768, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35151736

ABSTRACT

Incinerated sewage sludge ash is tested here as a cement and aggregate substitute in mortar blocks. It can be used at various percentages to reduce the overall cost of production and promote ash recycling. The compressive strength of the cast blocks was tested at 28 days to determine the optimal combination of ball milled ash (replacing cement) and sewage sludge ash (replacing sand). This was compared with a control block made of cement and sand only. The cast blocks with the optimal ash formulation were tested for their flexural strength and other properties such as surface functional groups, constituent phases and porosity. The control and ash mortars exhibited similar properties. A potential application of these blocks is to use them as part of seawalls. These blocks were thus suspended in the sea for 6 months. Marine organism attachment was observed over time in both control and ash mortar blocks. There was no significant difference between the mortars after 6 months. The mortar blocks were also subjected to leaching tests (NEN-7345). The leachates did not exhibit toxicity to microalgae. In contrast, mild toxicity was observed in the sea urchin embryo development assay. Overall, the study suggests that sewage sludge ash is a potential material to be used for seawall construction as it has the desirable mechanical properties. However, there remain some residual marine toxicity concerns that need to be further addressed.


Subject(s)
Construction Materials , Sewage , Compressive Strength , Recycling , Sand
6.
Environ Pollut ; 283: 117056, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33862340

ABSTRACT

It is important to evaluate how ambient particles are deposited in the human respiratory system in view of the adverse effects they pose to human health. Traditional methods of investigating human exposure to ambient particles suffer from drawbacks related either to the lack of chemical information from particle number-based measurements or to the poor time resolution of mass-based measurements. To address these issues, in this study, human exposure to ambient particulate matter was investigated using single particle analysis, which provided chemical information with a high time resolution. Based on single particle measurements conducted in the Pearl River Delta, China, nine particle types were identified, and EC (elemental carbon) particles were determined to be the most dominant type of particle. In general, the submicron size mode was dominant in terms of the number concentration for all of the particle types, except for Na-rich and dust particles. On average, around 34% of particles were deposited in the human respiratory system with 13.9%, 7.9%, and 12.6% being distributed in the head, tracheobronchial, and pulmonary regions, respectively. The amount of Na-rich particles deposited was the highest, followed by EC. The overall deposition efficiencies of the Na-rich and dust particles were higher than those of the other particle types due to their higher efficiencies in the head region, which could be caused by the greater sedimentation and impaction rates of larger particles. In the head region, the Na-rich particles made the largest contribution (30.5%) due to their high deposition efficiency, whereas in the tracheobronchial and pulmonary regions, EC made the largest contribution due to its high concentration. In summary, the findings of this initial trial demonstrate the applicability of single particle analysis to the assessment of human exposure to ambient particles and its potential to support traditional methods of analysis.


Subject(s)
Air Pollutants , Rivers , Air Pollutants/analysis , China , Humans , Particle Size , Particulate Matter/analysis
7.
Chemosphere ; 262: 127842, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32799146

ABSTRACT

New Particle Formation (NPF) refers to transformation of gaseous precursors in the atmosphere due to nucleation and subsequent growth process through physicochemical interaction. It has generated a lot of interest due to its profound impact on global and regional environment, climate and human health. We reviewed the studies on NPF in three city clusters of China: the North China Plain, the Yangtze River Delta and the Pearl River Delta obtained through experiment simulations (e.g., chamber simulation, flow-tube simulation, etc.), field observations, and numerical simulations. Due to its atmospheric background pollution and strong oxidation capacities resulting in high source rate of precursors, China's atmosphere possesses challenges different from those evaluated in previous studies on cleaning sites and other developing countries. Hence, NPF events can simultaneously exhibit high condensable sink, formation rate and growth rate. In addition, the high intensity of anthropogenic emissions in urban China has led to greater diversity of pollutant species involved in NPF nucleation and subsequent growth, compared to the dominant role of biogenic precursors at cleaning sites. Differences in geographical location and industrial structure also lead to significant distinctions in NPF characteristics of the three city clusters. Consequently, the lack of understanding of nucleation mechanism of complexly polluted background sites makes the global and regional climate models with submodels based on clean background have enormous uncertainty when applied to urban China. The establishment of a mature research ecosystem including field observations, laboratory simulations and numerical simulations is the key to the breakthrough of NPF research in China.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Aerosols/analysis , Atmosphere/chemistry , China , Cities , Climate , Ecosystem , Environmental Pollution , Gases , Humans , Particle Size , Particulate Matter/analysis
8.
Sci Total Environ ; 725: 138228, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32302828

ABSTRACT

Aerosol acidity is of great interest due to its effects on atmospheric chemical processes and impact on human health; however, the driving factors of aerosol acidity have only been scarcely investigated. This study characterized the aerosol acidity during the wet and dry seasons in Guangzhou, China, and systematically analyzed the seasonal variation and the corresponding driving factors of aerosol acidity followed by the discussion of their impact on gas-aerosol partitioning of NH3 and HNO3. It was demonstrated that the pH of PM2.5 was 0.08 unit lower (more acidic) during wet season than during the dry season and the aerosol acidity varied less in South China than that in North China. Additionally, our results showed that the meteorological parameters including temperature and relative humidity have larger effect on aerosol pH variation than chemical species. Particularly, the lower temperature during dry season had the positive influence (0.38 pH unit) on aerosol pH compared to the wet season; however, the negative effect due to relative humidity (RH) and chemical species resulted in a smaller seasonal variation of aerosol pH between these two seasons. The sensitivity analysis showed that the increase of temperature has negative impact (reducing pH) on aerosol pH with an almost linear relationship, while RH and chemical species represented a two-phase linear and nonlinear effect, respectively. Finally, the calculation of gas-aerosol partitioning indicated that the temperature had the largest influence on the seasonal variation of gas-aerosol partitioning for both HNO3 and NH3 followed by liquid water content and non-ideality, while aerosol acidity imposed the lowest impact, which suggests that all the parameters including meteorological and chemical species should be comprehensively evaluated to devise a PM2.5 control strategy.

9.
Materials (Basel) ; 11(10)2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30347761

ABSTRACT

This paper presents the development of a novel, multifunctional, floatable, lightweight cement composite (FLCC) using three different types of glass microspheres for structural engineering applications. Eight different mixtures of FLCC were produced and their matrix-related parameters were examined experimentally by adopting different types of microsphere fillers, fiber content (polyethylene fibers (PE)), and water-to-binder ratios. Along with the mechanical properties such as compressive, flexural, tensile strengths, and modulus of elasticity, the water tightness of the material was evaluated by sorptivity measurements and the energy efficiency by thermal conductivity. The optimal FLCC has an oven-dry density of 750 kg/m³, compressive strength (fcm) up to 41 MPa after 28-day moist curing, low thermal conductivity of 0.152 W/mK, and very low sorptivity. It is found that an optimized amount of PE fiber is beneficial for improving the tensile resistance and ductility of FLCC while a relatively large amount of microspheres can increase the entrapped air voids in the FLCC matrix and reduce its density and thermal conductivity. Microstructural analysis by scanning electron microscopy (SEM) reveals that the microspheres are distributed uniformly in the cement matrix and are subjected to triaxial compression confinement, which leads to high strength of FLCC. Segregation due to density difference of FLCC ingredients is not observed with up to 60% (by weight) of glass microspheres added. Compared to the other lightweight aggregate concretes, the proposed FLCC could be used to build floating concrete structures, insulating elements, or even load-bearing structural elements such as floor and wall panels in which self-weight is a main concern.

10.
Sci Rep ; 7: 43298, 2017 02 27.
Article in English | MEDLINE | ID: mdl-28240300

ABSTRACT

Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1-1.3 eV and 2.1-2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7-1.8 and 4.0-4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...