Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Comput Biol Med ; 163: 107158, 2023 09.
Article in English | MEDLINE | ID: mdl-37390762

ABSTRACT

Regular physical exercise and appropriate nutrition affect metabolic and hormonal responses and may reduce the risk of developing chronic non-communicable diseases such as high blood pressure, ischemic stroke, coronary heart disease, some types of cancer, and type 2 diabetes mellitus. Computational models describing the metabolic and hormonal changes due to the synergistic action of exercise and meal intake are, to date, scarce and mostly focussed on glucose absorption, ignoring the contribution of the other macronutrients. We here describe a model of nutrient intake, stomach emptying, and absorption of macronutrients in the gastrointestinal tract during and after the ingestion of a mixed meal, including the contribution of proteins and fats. We integrated this effort to our previous work in which we modeled the effects of a bout of physical exercise on metabolic homeostasis. We validated the computational model with reliable data from the literature. The simulations are overall physiologically consistent and helpful in describing the metabolic changes due to everyday life stimuli such as multiple mixed meals and variable periods of physical exercise over prolonged periods of time. This computational model may be used to design virtual cohorts of subjects differing in sex, age, height, weight, and fitness status, for specialized in silico challenge studies aimed at designing exercise and nutrition schemes to support health.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Homeostasis , Exercise/physiology , Insulin , Nutrients , Computer Simulation , Blood Glucose/metabolism
2.
Environ Health Perspect ; 130(3): 37002, 2022 03.
Article in English | MEDLINE | ID: mdl-35238605

ABSTRACT

BACKGROUND: Mechanistic data is increasingly used in hazard identification of chemicals. However, the volume of data is large, challenging the efficient identification and clustering of relevant data. OBJECTIVES: We investigated whether evidence identification for hazard assessment can become more efficient and informed through an automated approach that combines machine reading of publications with network visualization tools. METHODS: We chose 13 chemicals that were evaluated by the International Agency for Research on Cancer (IARC) Monographs program incorporating the key characteristics of carcinogens (KCCs) approach. Using established literature search terms for KCCs, we retrieved and analyzed literature using Integrated Network and Dynamical Reasoning Assembler (INDRA). INDRA combines large-scale literature processing with pathway databases and extracts relationships between biomolecules, bioprocesses, and chemicals into statements (e.g., "benzene activates DNA damage"). These statements were subsequently assembled into networks and compared with the KCC evaluation by the IARC, to evaluate the informativeness of our approach. RESULTS: We found, in general, larger networks for those chemicals which the IARC has evaluated the evidence to be strong for KCC induction. Larger networks were not directly linked to publication count, given that we retrieved small networks for several chemicals with little support for KCC activation according to the IARC, despite the significant volume of literature for these specific chemicals. In addition, interpreting networks for genotoxicity and DNA repair showed concordance with the IARC KCC evaluation. DISCUSSION: Our method is an automated approach to condense mechanistic literature into searchable and interpretable networks based on an a priori ontology. The approach is no replacement of expert evaluation but, instead, provides an informed structure for experts to quickly identify which statements are made in which papers and how these could connect. We focused on the KCCs because these are supported by well-described search terms. The method needs to be tested in other frameworks as well to demonstrate its generalizability. https://doi.org/10.1289/EHP9112.


Subject(s)
Carcinogens , Neoplasms , Benzene , Carcinogens/toxicity , Databases, Factual , Humans , Neoplasms/chemically induced , Neoplasms/epidemiology , Risk Assessment
3.
Front Immunol ; 11: 644, 2020.
Article in English | MEDLINE | ID: mdl-32362896

ABSTRACT

A healthy immune status is strongly conditioned during early life stages. Insights into the molecular drivers of early life immune development and function are prerequisite to identify strategies to enhance immune health. Even though several starting points for targeted immune modulation have been identified and are being developed into prophylactic or therapeutic approaches, there is no regulatory guidance on how to assess the risk and benefit balance of such interventions. Six early life immune causal networks, each compromising a different time period in early life (the 1st, 2nd, 3rd trimester of gestations, birth, newborn, and infant period), were generated. Thereto information was extracted and structured from early life literature using the automated text mining and machine learning tool: Integrated Network and Dynamical Reasoning Assembler (INDRA). The tool identified relevant entities (e.g., genes/proteins/metabolites/processes/diseases), extracted causal relationships among these entities, and assembled them into early life-immune causal networks. These causal early life immune networks were denoised using GeneMania, enriched with data from the gene-disease association database DisGeNET and Gene Ontology resource tools (GO/GO-SLIM), inferred missing relationships and added expert knowledge to generate information-dense early life immune networks. Analysis of the six early life immune networks by PageRank, not only confirmed the central role of the "commonly used immune markers" (e.g., chemokines, interleukins, IFN, TNF, TGFB, and other immune activation regulators (e.g., CD55, FOXP3, GATA3, CD79A, C4BPA), but also identified less obvious candidates (e.g., CYP1A2, FOXK2, NELFCD, RENBP). Comparison of the different early life periods resulted in the prediction of 11 key early life genes overlapping all early life periods (TNF, IL6, IL10, CD4, FOXP3, IL4, NELFCD, CD79A, IL5, RENBP, and IFNG), and also genes that were only described in certain early life period(s). Concluding, here we describe a network-based approach that provides a science-based and systematical method to explore the functional development of the early life immune system through time. This systems approach aids the generation of a testing strategy for the safety and efficacy of early life immune modulation by predicting the key candidate markers during different phases of early life immune development.


Subject(s)
Child Development/physiology , Computational Biology/methods , Immune System/physiology , Animals , Biomarkers , Chemokines/genetics , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Disease Models, Animal , Forkhead Transcription Factors/genetics , Gene Regulatory Networks , Humans , Immune System Diseases/genetics , Infant , Infant, Newborn , Machine Learning
4.
Food Res Int ; 122: 77-86, 2019 08.
Article in English | MEDLINE | ID: mdl-31229132

ABSTRACT

The expected increase of global obesity prevalence makes it necessary to have information about the effects of meal intakes on the feeling of appetite. Because human clinical studies are time and cost intensive, there is a need for a reliable alternative. The aim of this study was to develop and evaluate an in vitro-in silico technology to predict the feelings of fullness and hunger after consumption of different types of meals. In this technology the results from an in vitro gastrointestinal model (tiny-TIMagc) on gastric viscosity and intestinal digestion of different meals were used as input data for an in silico artificial neural network (ANN). The predictions of the feeling of fullness and hunger were compared with actual human scores for these parameters after intake of the same type of meals. From these first series of experiments, with a relatively small number of in vitro digestive parameters as input for in silico modeling, a reasonable prediction of appetite rating for foods can be realized at a time- and cost-effective way.


Subject(s)
Appetite/physiology , Gastrointestinal Tract/physiology , Models, Biological , Neural Networks, Computer , Computer Simulation , Digestion/physiology , Equipment Design , Food/classification , Humans , Meals/physiology , Satiation/physiology , Viscosity
5.
BMC Biomed Eng ; 1: 29, 2019.
Article in English | MEDLINE | ID: mdl-32903378

ABSTRACT

BACKGROUND: Triple tracer meal experiments used to investigate organ glucose-insulin dynamics, such as endogenous glucose production (EGP) of the liver are labor intensive and expensive. A procedure was developed to obtain individual liver related parameters to describe EGP dynamics without the need for tracers. RESULTS: The development used an existing formula describing the EGP dynamics comprising 4 parameters defined from glucose, insulin and C-peptide dynamics arising from triple meal studies. The method employs a set of partial differential equations in order to estimate the parameters for EGP dynamics. Tracer-derived and simulated data sets were used to develop and test the procedure. The predicted EGP dynamics showed an overall mean R 2 of 0.91. CONCLUSIONS: In summary, a method was developed for predicting the hepatic EGP dynamics for healthy, pre-diabetic, and type 2 diabetic individuals without applying tracer experiments.

6.
Theor Biol Med Model ; 13(1): 17, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27387922

ABSTRACT

BACKGROUND: An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. METHODS: A multilayer feed-forward neural network was trained with sets of experimental data relating concentration-time courses of plasma satiety hormones to Visual Analog Scales (VAS) scores. The network successfully predicted VAS responses from sets of satiety hormone data obtained in experiments using different food compositions. RESULTS: The correlation coefficients for the predicted VAS responses for test sets having i) a full set of three satiety hormones, ii) a set of only two satiety hormones, and iii) a set of only one satiety hormone were 0.96, 0.96, and 0.89, respectively. The predicted VAS responses discriminated the satiety effects of high satiating food types from less satiating food types both in orally fed and ileal infused forms. CONCLUSIONS: From this application of artificial neural networks, one may conclude that neural network models are very suitable to describe situations where behavior is complex and incompletely understood. However, training data sets that fit the experimental conditions need to be available.


Subject(s)
Hunger/physiology , Models, Biological , Neural Networks, Computer , Satiation/physiology , Visual Analog Scale , Administration, Oral , Cholecystokinin/blood , Databases as Topic , Humans , Ileum/drug effects , Ileum/physiology , Peptide YY/blood , Stomach/drug effects
7.
Theor Biol Med Model ; 11: 28, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24917054

ABSTRACT

BACKGROUND: In-silico models that attempt to capture and describe the physiological behavior of biological organisms, including humans, are intrinsically complex and time consuming to build and simulate in a computing environment. The level of detail of description incorporated in the model depends on the knowledge of the system's behavior at that level. This knowledge is gathered from the literature and/or improved by knowledge obtained from new experiments. Thus model development is an iterative developmental procedure. The objective of this paper is to describe a new plug and play scheme that offers increased flexibility and ease-of-use for modeling and simulating physiological behavior of biological organisms. METHODS: This scheme requires the modeler (user) first to supply the structure of the interacting components and experimental data in a tabular format. The behavior of the components described in a mathematical form, also provided by the modeler, is externally linked during simulation. The advantage of the plug and play scheme for modeling is that it requires less programming effort and can be quickly adapted to newer modeling requirements while also paving the way for dynamic model building. RESULTS: As an illustration, the paper models the dynamics of gastric emptying behavior experienced by humans. The flexibility to adapt the model to predict the gastric emptying behavior under varying types of nutrient infusion in the intestine (ileum) is demonstrated. The predictions were verified with a human intervention study. The error in predicting the half emptying time was found to be less than 6%. CONCLUSIONS: A new plug-and-play scheme for biological systems modeling was developed that allows changes to the modeled structure and behavior with reduced programming effort, by abstracting the biological system into a network of smaller sub-systems with independent behavior. In the new scheme, the modeling and simulation becomes an automatic machine readable and executable task.


Subject(s)
Gastric Emptying , Models, Biological , Algorithms , Humans , Software , Systems Biology
8.
JMIR Res Protoc ; 2(2): e44, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24176906

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2D) is a common age-related disease, and is a major health concern, particularly in developed countries where the population is aging, including Europe. The multi-scale immune system simulator for the onset of type 2 diabetes (MISSION-T2D) is a European Union-funded project that aims to develop and validate an integrated, multilevel, and patient-specific model, incorporating genetic, metabolic, and nutritional data for the simulation and prediction of metabolic and inflammatory processes in the onset and progression of T2D. The project will ultimately provide a tool for diagnosis and clinical decision making that can estimate the risk of developing T2D and predict its progression in response to possible therapies. Recent data showed that T2D and its complications, specifically in the heart, kidney, retina, and feet, should be considered a systemic disease that is sustained by a pervasive, metabolically-driven state of inflammation. Accordingly, there is an urgent need (1) to understand the complex mechanisms underpinning the onset of this disease, and (2) to identify early patient-specific diagnostic parameters and related inflammatory indicators. OBJECTIVE: We aim to accomplish this mission by setting up a multi-scale model to study the systemic interactions of the biological mechanisms involved in response to a variety of nutritional and metabolic stimuli and stressors. METHODS: Specifically, we will be studying the biological mechanisms of immunological/inflammatory processes, energy intake/expenditure ratio, and cell cycle rate. The overall architecture of the model will exploit an already established immune system simulator as well as several discrete and continuous mathematical methods for modeling of the processes critically involved in the onset and progression of T2D. We aim to validate the predictions of our models using actual biological and clinical data. RESULTS: This study was initiated in March 2013 and is expected to be completed by February 2016. CONCLUSIONS: MISSION-T2D aims to pave the way for translating validated multilevel immune-metabolic models into the clinical setting of T2D. This approach will eventually generate predictive biomarkers for this disease from the integration of clinical data with metabolic, nutritional, immune/inflammatory, genetic, and gut microbiota profiles. Eventually, it should prove possible to translate these into cost-effective and mobile-based diagnostic tools.

9.
Rapid Commun Mass Spectrom ; 27(9): 917-23, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23592192

ABSTRACT

RATIONALE: Mass spectra obtained by deconvolution of liquid chromatography/high-resolution mass spectrometry (LC/HRMS) data can be impaired by non-informative mass-over-charge (m/z) channels. This impairment of mass spectra can have significant negative influence on further post-processing, like quantification and identification. METHODS: A metric derived from the knowledge of errors in isotopic distribution patterns, and quality of the signal within a pre-defined mass chromatogram block, has been developed to pre-select all informative m/z channels. RESULTS: This procedure results in the clean-up of deconvoluted mass spectra by maintaining the intensity counts from m/z channels that originate from a specific compound/molecular ion, for example, molecular ion, adducts, (13) C-isotopes, multiply charged ions and removing all m/z channels that are not related to the specific peak. The methodology has been successfully demonstrated for two sets of high-resolution LC/MS data. CONCLUSIONS: The approach described is therefore thought to be a useful tool in the automatic processing of LC/HRMS data. It clearly shows the advantages compared to other approaches like peak picking and de-isotoping in the sense that all information is retained while non-informative data is removed automatically.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Algorithms , Amino Acids/analysis , Amino Acids/blood , Bile Acids and Salts/analysis , Bile Acids and Salts/blood , Carbon Isotopes/analysis , Deuterium/analysis , Entropy , Humans
10.
Anal Chim Acta ; 740: 12-9, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22840645

ABSTRACT

Setting appropriate bin sizes to aggregate hyphenated high-resolution mass spectrometry data, belonging to similar mass over charge (m/z) channels, is vital to metabolite quantification and further identification. In a high-resolution mass spectrometer when mass accuracy (ppm) varies as a function of molecular mass, which usually is the case while reading m/z from low to high values, it becomes a challenge to determine suitable bin sizes satisfying all m/z ranges. Similarly, the chromatographic process within a hyphenated system, like any other controlled processes, introduces some process driven systematic behavior that ultimately distorts the mass chromatogram signal. This is especially seen in liquid chromatogram-mass spectrometry (LC-MS) measurements where the gradient of the solvent and the washing step cycle-part of the chromatographic process, produce a mass chromatogram with a non-uniform baseline along the retention time axis. Hence prior to any automatic signal decomposition techniques like deconvolution, it is a equally vital to perform the baseline correction step for absolute metabolite quantification. This paper will discuss an instrument and process independent solution to the binning and the baseline correction problem discussed above, seen together, as an effective pre-processing step toward liquid chromatography-high resolution-mass spectrometry (LC-HR-MS) data deconvolution.


Subject(s)
Fatty Acids/blood , Phospholipids/blood , Chromatography, Liquid/instrumentation , Chromatography, Liquid/methods , Entropy , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...