Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 10(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802941

ABSTRACT

Pseudomonas aeruginosa (PA) infection increases reactive oxygen species (ROS), and earlier, we have shown a role for NADPH oxidase-derived ROS in PA-mediated lung inflammation and injury. Here, we show a role for the lung epithelial cell (LEpC) NOX4 in PA-mediated chromatin remodeling and lung inflammation. Intratracheal administration of PA to Nox4flox/flox mice for 24 h caused lung inflammatory injury; however, epithelial cell-deleted Nox4 mice exhibited reduced lung inflammatory injury, oxidative stress, secretion of pro-inflammatory cytokines, and decreased histone acetylation. In LEpCs, NOX4 was localized both in the cytoplasmic and nuclear fractions, and PA stimulation increased the nuclear NOX4 expression and ROS production. Downregulation or inhibition of NOX4 and PKC δ attenuated the PA-induced nuclear ROS. PA-induced histone acetylation was attenuated by Nox4-specific siRNA, unlike Nox2. PA stimulation increased HDAC1/2 oxidation and reduced HDAC1/2 activity. The PA-induced oxidation of HDAC2 was attenuated by N-acetyl-L-cysteine and siRNA specific for Pkc δ, Sphk2, and Nox4. PA stimulated RAC1 activation in the nucleus and enhanced the association between HDAC2 and RAC1, p-PKC δ, and NOX4 in LEpCs. Our results revealed a critical role for the alveolar epithelial NOX4 in mediating PA-induced lung inflammatory injury via nuclear ROS generation, HDAC1/2 oxidation, and chromatin remodeling.

2.
BMC Genomics ; 20(1): 984, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31842752

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa (PA) is an opportunistic Gram-negative bacterium that causes serious life threatening and nosocomial infections including pneumonia. PA has the ability to alter host genome to facilitate its invasion, thus increasing the virulence of the organism. Sphingosine-1- phosphate (S1P), a bioactive lipid, is known to play a key role in facilitating infection. Sphingosine kinases (SPHK) 1&2 phosphorylate sphingosine to generate S1P in mammalian cells. We reported earlier that Sphk2-/- mice offered significant protection against lung inflammation, compared to wild type (WT) animals. Therefore, we profiled the differential expression of genes between the protected group of Sphk2-/- and the wild type controls to better understand the underlying protective mechanisms related to the Sphk2 deletion in lung inflammatory injury. Whole transcriptome shotgun sequencing (RNA-Seq) was performed on mouse lung tissue using NextSeq 500 sequencing system. RESULTS: Two-way analysis of variance (ANOVA) analysis was performed and differentially expressed genes following PA infection were identified using whole transcriptome of Sphk2-/- mice and their WT counterparts. Pathway (PW) enrichment analyses of the RNA seq data identified several signaling pathways that are likely to play a crucial role in pneumonia caused by PA such as those involved in: 1. Immune response to PA infection and NF-κB signal transduction; 2. PKC signal transduction; 3. Impact on epigenetic regulation; 4. Epithelial sodium channel pathway; 5. Mucin expression; and 6. Bacterial infection related pathways. Our genomic data suggests a potential role for SPHK2 in PA-induced pneumonia through elevated expression of inflammatory genes in lung tissue. Further, validation by RT-PCR on 10 differentially expressed genes showed 100% concordance in terms of vectoral changes as well as significant fold change. CONCLUSION: Using Sphk2-/- mice and differential gene expression analysis, we have shown here that S1P/SPHK2 signaling could play a key role in promoting PA pneumonia. The identified genes promote inflammation and suppress others that naturally inhibit inflammation and host defense. Thus, targeting SPHK2/S1P signaling in PA-induced lung inflammation could serve as a potential therapy to combat PA-induced pneumonia.


Subject(s)
Gene Deletion , Gene Expression Profiling/methods , Gene Regulatory Networks , Phosphotransferases (Alcohol Group Acceptor)/genetics , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa/pathogenicity , Analysis of Variance , Animals , Disease Models, Animal , Female , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Lung/immunology , Lung/microbiology , Mice , Pseudomonas Infections/genetics , Pseudomonas Infections/immunology , RNA-Seq , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...