Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(51): 20563-20574, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38109259

ABSTRACT

The phenolic compound trichlorophenol (TCP) is an ingredient in fungicides and herbicides. This compound's high stability, bioaccumulation, toxicity, and poor biodegradability result in severe environmental and biological health issues. Consequently, it is crucial to have an affordable and sensitive method for detecting TCP in environmental samples. In this study, α-phase bismuth oxide microplates and polydopamine-functionalized reduced graphene oxide (α-Bi2O3 MPs/PDA-RGO) were synthesized using a simple ultrasonic method and characterized with various analytical and physical characterizations. The conversion of the catechol moieties present in the resulting PDA-RGO material into quinones facilitates productive interactions with diverse functional groups, such as hydroxyl, amine, and imine. Consequently, the compounds 2,4,6-trichlorophenol (TCP) engages in electrochemical interactions with the aforementioned functional groups. As a result, TCP shows more excellent selectivity on the designed α-Bi2O3 MPs/PDA-RGO/SPCE sensor. Under the optimized conditions, the sensor demonstrated a lower detection limit (0.0042 µM), a limit of quantification (0.0078 µM), good sensitivity (2.24 µA µM-1 cm2), a wide linear range (0.019-190.7 and 212.7-1649 µM), and pinpoint specificity. The efficacy of the sensor is additionally validated through the accurate identification of TCP residues in water, soil, and food samples.


Subject(s)
Graphite , Graphite/chemistry , Phenols , Water , Electrochemical Techniques/methods
2.
Chemosphere ; 308(Pt 2): 136416, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36099991

ABSTRACT

Industrialization and globalization, both on an international and local scale, have caused large quantities of toxic chemicals to be released into the environment. Thus, developing an environmental pollutant sensor platform that is sensitive, reliable, and cost-effective is extremely important. In current years, considerable progress has been made in the expansion of electrochemical sensors and biosensors to monitor the environment using nanomaterials. A large number of emerging biomarkers are currently in existence in the biological fluids, clinical, pharmaceutical and bionanomaterial-based electrochemical biosensor platforms have drawn much attention. Electrochemical systems have been used to detect biomarkers rapidly, sensitively, and selectively using biomaterials such as biopolymers, nucleic acids, proteins etc. In this current review, several recent trends have been identified in the growth of electrochemical sensor platforms using nanotechnology such as carbon nanomaterials, metal oxide nanomaterials, metal nanoparticles, biomaterials and polymers. The integration strategies, applications, specific properties and future projections of nanostructured materials for emerging progressive sensor platforms are also observed. The objective of this review is to provide a comprehensive overview of nanoparticles in the field of electrochemical sensors and biosensors.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Nanostructures , Biocompatible Materials , Biomarkers , Carbon , Environmental Pollutants , Nucleic Acids , Oxides , Pharmaceutical Preparations , Polymers
3.
Ecotoxicol Environ Saf ; 209: 111828, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33385681

ABSTRACT

Herein, we fabricated a feasible and accurate sensing platform for the quantification of toxic organic pollutant 2-nitroaniline (2-NA) in water samples through electrocatalyst made up of bismuth molybdate (Bi2MoO6, BMO) functionalized carbon nanofiber (f-CNF) modified electrode. The preparation of BMO/f-CNF composite is of two methods, such as co-precipitation (C-BMO/f-CNF) and ultrasonication method (U-BMO/f-CNF). The physicochemical properties of the composites were characterized by XRD, FTIR, Raman, BET, FE-SEM, and HR-TEM techniques. At U-BMO/f-CNF, the charge transfer resistance was low (Rct = 12.47 Ω) compared to C-BMO/f-CNF because nanosized U-BMO particles correctly aim at the defective sites of the f-CNF surface wall. Further, the electrocatalytic activity of C&U-BMO/f-CNF composites was examined by cyclic voltammetry (CV) and differential pulse voltammetry techniques (DPV) for the electrochemical detection of 2-nitroaniline (2-NA). The U-BMO/f-CNF/GCE shows a higher cathodic current, wide dynamic linear range of 0.01-168.01 µM, and superior electrocatalytic activity with a low detection limit (0.0437 µM) and good sensitivity (0.6857 µA µM-1 cm-2). The excellent selectivity nature of U-BMO/f-CNF/GCE was observed in the presence of various organic pollutants and a few toxic metal cations. The practical applicability such as stability, repeatability towards 2-NA outcomes with accepted results. Besides, the practical viability of as proposed U-BMO/f-CNF sensor was investigated in soil and lake water samples delivers good recovery results. Hence from these analyses, we conclude that U-BMO/f-CNF/GCE potential for the determination of hazardous environmental pollutant 2-NA.


Subject(s)
Bismuth , Electrochemical Techniques/methods , Environmental Monitoring/methods , Environmental Pollutants/analysis , Molybdenum , Nanofibers/chemistry , Aniline Compounds , Carbon/chemistry , Electrodes , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...