Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Article in English | MEDLINE | ID: mdl-25274365

ABSTRACT

Parasites can shape the foraging behaviour of their hosts through cues indicating risk of infection. When cues for risk co-occur with desired traits such as forage quality, individuals face a trade-off between nutrient acquisition and parasite exposure. We evaluated how this trade-off may influence disease transmission in a 3-year experimental study of anthrax in a guild of mammalian herbivores in Etosha National Park, Namibia. At plains zebra (Equus quagga) carcass sites we assessed (i) carcass nutrient effects on soils and grasses, (ii) concentrations of Bacillus anthracis (BA) on grasses and in soils, and (iii) herbivore grazing behaviour, compared with control sites, using motion-sensing camera traps. We found that carcass-mediated nutrient pulses improved soil and vegetation, and that BA is found on grasses up to 2 years after death. Host foraging responses to carcass sites shifted from avoidance to attraction, and ultimately to no preference, with the strength and duration of these behavioural responses varying among herbivore species. Our results demonstrate that animal carcasses alter the environment and attract grazing hosts to parasite aggregations. This attraction may enhance transmission rates, suggesting that hosts are limited in their ability to trade off nutrient intake with parasite avoidance when relying on indirect cues.


Subject(s)
Anthrax/veterinary , Bacillus anthracis/physiology , Equidae , Feeding Behavior , Poaceae/chemistry , Soil/chemistry , Animals , Anthrax/microbiology , Anthrax/transmission , Bacillus anthracis/isolation & purification , Cadaver , Equidae/physiology , Longitudinal Studies , Namibia , Species Specificity
2.
Ecol Inform ; 24: 11-16, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25110471

ABSTRACT

The use of camera traps is now widespread and their importance in wildlife studies well understood. Camera trap studies can produce millions of photographs and there is a need for software to help manage photographs efficiently. In this paper, we describe a software system that was built to successfully manage a large behavioral camera trap study that produced more than a million photographs. We describe the software architecture and the design decisions that shaped the evolution of the program over the study's three year period. The software system has the ability to automatically extract metadata from images, and add customized metadata to the images in a standardized format. The software system can be installed as a standalone application on popular operating systems. It is minimalistic, scalable and extendable so that it can be used by small teams or individual researchers for a broad variety of camera trap studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...