Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2308862, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252810

ABSTRACT

Pastes and "foams" containing liquid metal (LM) as the continuous phase (liquid metal foams, LMFs) exhibit metallic properties while displaying paste or putty-like rheological behavior. These properties enable LMFs to be patterned into soft and stretchable electrical and thermal conductors through processes conducted at room temperature, such as printing. The simplest LMFs, featured in this work, are made by stirring LM in air, thereby entraining oxide-lined air "pockets" into the LM. Here, it is reported that mixing small amounts of water (as low as 1 wt%) into such LMFs gives rise to significant foaming by harnessing known reactions that evolve hydrogen and produce oxides. The resulting structures can be ≈4-5× their original volume and possess a fascinating combination of attributes: porosity, electrical conductivity, and responsiveness to environmental conditions. This expansion can be utilized for a type of 4D printing in which patterned conductors "grow," fill cavities, and change shape and density with respect to time. Excessive exposure to water in the long term ultimately consumes the metal in the LMF. However, when exposure to water is controlled, the metallic properties of porous LMFs can be preserved.

2.
Chem Rev ; 124(3): 860-888, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38291556

ABSTRACT

Printing of stretchable conductors enables the fabrication and rapid prototyping of stretchable electronic devices. For such applications, there are often specific process and material requirements such as print resolution, maximum strain, and electrical/ionic conductivity. This review highlights common printing methods and compatible inks that produce stretchable conductors. The review compares the capabilities, benefits, and limitations of each approach to help guide the selection of a suitable process and ink for an intended application. We also discuss methods to design and fabricate ink composites with the desired material properties (e.g., electrical conductance, viscosity, printability). This guide should help inform ongoing and future efforts to create soft, stretchable electronic devices for wearables, soft robots, e-skins, and sensors.

3.
Science ; 379(6631): 488-493, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36730410

ABSTRACT

Soft materials tend to be highly permeable to gases, making it difficult to create stretchable hermetic seals. With the integration of spacers, we demonstrate the use of liquid metals, which show both metallic and fluidic properties, as stretchable hermetic seals. Such soft seals are used in both a stretchable battery and a stretchable heat transfer system that involve volatile fluids, including water and organic fluids. The capacity retention of the battery was ~72.5% after 500 cycles, and the sealed heat transfer system showed an increased thermal conductivity of approximately 309 watts per meter-kelvin while strained and heated. Furthermore, with the incorporation of a signal transmission window, we demonstrated wireless communication through such seals. This work provides a route to create stretchable yet hermetic packaging design solutions for soft devices.

4.
Adv Mater ; 35(19): e2205196, 2023 May.
Article in English | MEDLINE | ID: mdl-36044678

ABSTRACT

This review highlights the unique techniques for patterning liquid metals containing gallium (e.g., eutectic gallium indium, EGaIn). These techniques are enabled by two unique attributes of these liquids relative to solid metals: 1) The fluidity of the metal allows it to be injected, sprayed, and generally dispensed. 2) The solid native oxide shell allows the metal to adhere to surfaces and be shaped in ways that would normally be prohibited due to surface tension. The ability to shape liquid metals into non-spherical structures such as wires, antennas, and electrodes can enable fluidic metallic conductors for stretchable electronics, soft robotics, e-skins, and wearables. The key properties of these metals with a focus on methods to pattern liquid metals into soft or stretchable devices are summari.

5.
ACS Appl Mater Interfaces ; 12(33): 37561-37570, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32814378

ABSTRACT

Soft robotics focuses on mimicking natural systems to produce dexterous motion. Dielectric elastomer actuators (DEAs) are an attractive option due to their large strains, high efficiencies, lightweight design, and integrability, but require high electric fields. Conventional approaches to improve DEA performance by incorporating solid fillers in the polymer matrices can increase the dielectric constant but to the detriment of mechanical properties. In the present work, we draw inspiration from soft and deformable human skin, enabled by its unique structure, which consists of a fluid-filled membrane, to create self-enclosed liquid filler (SELF)-polymer composites by mixing an ionic liquid into the elastomeric matrix. Unlike hydrogels and ionogels, the SELF-polymer composites are made from immiscible liquid fillers, selected based on interfacial interaction with the elastomer matrix, and exist as dispersed globular phases. This combination of structure and filler selection unlocks synergetic improvements in electromechanical properties-doubling of dielectric constant, 100 times decrease in Young's modulus, and ∼5 times increase in stretchability. These composites show superior thermal stability to volatile losses, combined with excellent transparency. These ultrasoft high-k composites enable a significant improvement in the actuation performance of DEAs-longitudinal strain (5 times) and areal strain (8 times)-at low applied nominal electric fields (4 V/µm). They also enable high-sensitivity capacitive pressure sensors without the need of miniaturization and microstructuring. This class of self-enclosed ionic liquid polymer composites could impact the areas of soft robotics, shape morphing, flexible electronics, and optoelectronics.

6.
Adv Mater ; 32(30): e2001642, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32567064

ABSTRACT

Growing interest in soft robotics, stretchable electronics, and electronic skins has created demand for soft, compliant, and stretchable electrodes and interconnects. Here, dielectrophoresis (DEP) is used to assemble, align, and sinter eutectic gallium indium (EGaIn) microdroplets in uncured poly(dimethylsiloxane) (PDMS) to form electrically conducting microwires. There are several noteworthy aspects of this approach. 1) Generally, EGaIn droplets in silicone at loadings approaching 90 wt% remain insulating and form a conductive network only when subjected to sintering. Here, DEP facilitates assembly of EGaIn droplets into conductive microwires at loadings as low as 10 wt%. 2) DEP is done in silicone for the first time, enabling the microwires to be cured in a stretchable matrix. 3) Liquid EGaIn droplets sinter during DEP to form a stretchable metallic microwire that retains its shape after curing the silicone. 4) Use of liquid metal eliminates the issue of compliance mismatch observed in soft polymers with solid fillers. 5) The silicone-EGaIn "ink" can be assembled by DEP within the crevices of severely damaged wires to create stretchable interconnects that heal the damage mechanically and electrically. The DEP process of this unique set of materials is characterized and the interesting attributes enabled by such liquid microwires are demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...