Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 12(10)2020 Oct 11.
Article in English | MEDLINE | ID: mdl-33050580

ABSTRACT

: A tumor is a complex "organ" composed of malignant cancer cells harboring genetic aberrations surrounded by a stroma comprised of non-malignant cells and an extracellular matrix. Considerable evidence has demonstrated that components of the genetically "normal" tumor stroma contribute to tumor progression and resistance to a wide array of treatment modalities, including radiotherapy. Cancer-associated fibroblasts can promote radioresistance through their secreted factors, contact-mediated signaling, downstream pro-survival signaling pathways, immunomodulatory effects, and cancer stem cell-generating role. The extracellular matrix can govern radiation responsiveness by influencing oxygen availability and controlling the stability and bioavailability of growth factors and cytokines. Immune status regarding the presence of pro- and anti-tumor immune cells can regulate how tumors respond to radiation therapy. Furthermore, stromal cells including endothelial cells and adipocytes can modulate radiosensitivity through their roles in angiogenesis and vasculogenesis, and their secreted adipokines, respectively. Thus, to successfully eradicate cancers, it is important to consider how tumor stroma components interact with and regulate the response to radiation. Detailed knowledge of these interactions will help build a preclinical rationale to support the use of stromal-targeting agents in combination with radiotherapy to increase radiosensitivity.

2.
Cancer Cell ; 37(3): 289-307.e9, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32183949

ABSTRACT

Here, we utilized spontaneous models of pancreatic and lung cancer to examine how neoantigenicity shapes tumor immunity and progression. As expected, neoantigen expression during lung adenocarcinoma development leads to T cell-mediated immunity and disease restraint. By contrast, neoantigen expression in pancreatic ductal adenocarcinoma (PDAC) results in exacerbation of a fibro-inflammatory microenvironment that drives disease progression and metastasis. Pathogenic TH17 responses are responsible for this neoantigen-induced tumor progression in PDAC. Underlying these divergent T cell responses in pancreas and lung cancer are differences in infiltrating conventional dendritic cells (cDCs). Overcoming cDC deficiency in early-stage PDAC leads to disease restraint, while restoration of cDC function in advanced PDAC restores tumor-restraining immunity and enhances responsiveness to radiation therapy.


Subject(s)
Carcinoma, Pancreatic Ductal/immunology , Dendritic Cells/immunology , Immunotherapy/methods , Pancreatic Neoplasms/immunology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , Dendritic Cells/pathology , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy
3.
Sci Transl Med ; 11(499)2019 07 03.
Article in English | MEDLINE | ID: mdl-31270275

ABSTRACT

Although checkpoint immunotherapies have revolutionized the treatment of cancer, not all tumor types have seen substantial benefit. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy in which very limited responses to immunotherapy have been observed. Extensive immunosuppressive myeloid cell infiltration in PDAC tissues has been postulated as a major mechanism of resistance to immunotherapy. Strategies concomitantly targeting monocyte or granulocyte trafficking or macrophage survival, in combination with checkpoint immunotherapies, have shown promise in preclinical studies, and these studies have transitioned into ongoing clinical trials for the treatment of pancreatic and other cancer types. However, compensatory actions by untargeted monocytes, granulocytes, and/or tissue resident macrophages may limit the therapeutic efficacy of such strategies. CD11b/CD18 is an integrin molecule that is highly expressed on the cell surface of these myeloid cell subsets and plays an important role in their trafficking and cellular functions in inflamed tissues. Here, we demonstrate that the partial activation of CD11b by a small-molecule agonist (ADH-503) leads to the repolarization of tumor-associated macrophages, reduction in the number of tumor-infiltrating immunosuppressive myeloid cells, and enhanced dendritic cell responses. These actions, in turn, improve antitumor T cell immunity and render checkpoint inhibitors effective in previously unresponsive PDAC models. These data demonstrate that molecular agonism of CD11b reprograms immunosuppressive myeloid cell responses and potentially bypasses the limitations of current clinical strategies to overcome resistance to immunotherapy.


Subject(s)
CD11b Antigen/agonists , Immunity, Innate , Immunotherapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Animals , Antigens, CD/metabolism , Cell Proliferation , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Granulocytes/metabolism , Humans , Integrin alpha Chains/metabolism , Macrophage Activation , Mice, Inbred C57BL , Myeloid Cells/immunology , Neoplasm Metastasis , Survival Analysis , T-Lymphocytes/immunology , Treatment Outcome
4.
Immunity ; 45(2): 389-401, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27521269

ABSTRACT

CD8(+) T cells recognizing tumor-specific antigens are detected in cancer patients but are dysfunctional. Here we developed a tamoxifen-inducible liver cancer mouse model with a defined oncogenic driver antigen (SV40 large T-antigen) to follow the activation and differentiation of naive tumor-specific CD8(+) T (TST) cells after tumor initiation. Early during the pre-malignant phase of tumorigenesis, TST cells became dysfunctional, exhibiting phenotypic, functional, and transcriptional features similar to dysfunctional T cells isolated from late-stage human tumors. Thus, T cell dysfunction seen in advanced human cancers may already be established early during tumorigenesis. Although the TST cell dysfunctional state was initially therapeutically reversible, it ultimately evolved into a fixed state. Persistent antigen exposure rather than factors associated with the tumor microenvironment drove dysfunction. Moreover, the TST cell differentiation and dysfunction program exhibited features distinct from T cell exhaustion in chronic infections. Strategies to overcome this antigen-driven, cell-intrinsic dysfunction may be required to improve cancer immunotherapy.


Subject(s)
Antigens, Polyomavirus Transforming/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Immunotherapy, Adoptive/methods , Liver Neoplasms/immunology , Animals , Carcinogenesis , Cell Differentiation , Cells, Cultured , Cellular Senescence , Disease Models, Animal , Humans , Liver Neoplasms/chemically induced , Liver Neoplasms/therapy , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tamoxifen , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...