Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14355, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658110

ABSTRACT

Tropical peatlands are globally significant in the terrestrial carbon cycle as they are comprised of a large forest carbon sink and a large peat carbon store-both of which can potentially be exchanged with the atmosphere on decadal time frames. Greenhouse gas emissions from fire-disturbance and development of tropical peatlands over the last few decades, and the potential for ongoing emissions, highlights the need for policy to slow or halt emissions and to activate mechanisms to sequester carbon through restoration of degraded peatlands. The UN REDD + scheme provides a means for developing countries to receive payments for avoided deforestation and forest degradation, but the steps to achieve REDD+ compliance are rigorous and the details required can be a barrier to activating benefits-especially for peatlands where repeated cycles of fire interrupt forest recovery and create a range of recovery classes. Therefore, to improve estimates of peat fire emissions and of carbon balance of tropical peatlands, the biomass and combustion factor parameters need to be developed and applied according to forest recovery stage. In this study we use published activity data from the extensive 1997 fires in the peatlands of Indonesian Borneo to detail a transparent and accountable way to estimate and report emissions from tropical peatland fires. This example for estimating and reporting emissions is provided to assist REDD+ countries to efficiently develop their capacity for improving emissions estimates from fire-impacted tropical peatlands.


Subject(s)
Atmosphere , Capacity Building , Indonesia , Biomass , Carbon
2.
Carbon Balance Manag ; 18(1): 12, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37439912

ABSTRACT

BACKGROUND: Using 'higher-tier' emission factors in National Greenhouse Gas Inventories is essential to improve quality and accuracy when reporting carbon emissions and removals. Here we systematically reviewed 736 data across 249 sites (published 2003-2020) to derive emission factors associated with land-use change in Indonesian mangroves blue carbon ecosystems. RESULTS: Four management regimes-aquaculture, degraded mangrove, regenerated mangrove and undisturbed mangrove-gave mean total ecosystem carbon stocks of 579, 717, 890, and 1061 Mg C ha-1 respectively. The largest biomass carbon stocks were found in undisturbed mangrove; followed by regenerated mangrove, degraded mangrove, and aquaculture. Top 100-cm soil carbon stocks were similar across regimes, ranging between 216 and 296 Mg C ha-1. Carbon stocks between 0 and 300 cm varied significantly; the highest values were found in undisturbed mangrove (916 Mg C ha-1), followed by regenerated mangrove (803 Mg C ha-1), degraded mangrove 666 Mg C ha-1), and aquaculture (562 Mg C ha-1). CONCLUSIONS: Using deep layer (e.g., 300 cm) soil carbon stocks would compensate for the underestimation of surface soil carbon removed from areas where aquaculture is widely practised. From a project perspective, deep layer data could secure permanence or buffer potential leakages. From a national GHG accounting perspective, it also provides a safeguard in the MRV system.

3.
Sci Total Environ ; 779: 146365, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-33744585

ABSTRACT

Accurate assessment of tropical peat forest carbon stocks and impact of fires on carbon pools is required to determine the magnitude of emissions to the atmosphere and to support emissions reduction policies. We assessed total aboveground carbon (AGC) in biomass pools including trees, shrubs, deadwood, litter and char, and peat carbon to develop empirical estimates of peat swamp forest carbon stocks in response to fire and disturbance. In contrast to the common assumption that peat fires combust all AGC, we observed that about half of undisturbed forest AGC, equivalent to about 70 Mg C ha-1, remains after one or two recent fires - mainly in dead trees, woody debris and pyrogenic carbon. Both recently burnt and repeatedly burnt peat forests store similar amounts of carbon in the top 10 cm of peat when compared with undisturbed forests (70 Mg C ha-1), mainly due to increased peat bulk density after fires that compensates for their lower peat C%. The proportion of fuel mass consumed in fire, or combustion factor (CF), is required to make accurate estimates of peat fire emissions for both AGC and peat carbon. This study estimated a CF for AGC (CFAGC) of 0.56, comparable to the default value of the Intergovernmental Panel on Climate Change (IPCC). This study estimated a varying CF for peat (CFPEAT) that ranged from 0.4 to 0.68 as depth of burn increased. This revised CFPEAT is one third to one half of the IPCC default value of 1.0. The current assumption of complete combustion of peat (CF = 1.0) is widely acknowledged in the literature as oversimplification and is not supported by our field observations or data. This study provides novel empirical data to improve estimates of peat forests carbon stocks and emissions from tropical peat fires.

4.
Sci Total Environ ; 763: 142933, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33268261

ABSTRACT

Tropical peatlands are areas of high carbon density that are important in biosphere-atmosphere interactions. Drainage and burning of tropical peatlands releases about 5% of global greenhouse gas (GHG) emissions, yet there is great uncertainty in these estimates. Our comprehensive literature review of parameters required to calculate GHG emissions from burnt peat forests, following the international guidelines, revealed many gaps in knowledge of carbon pools and few recent supporting studies. To improve future estimates of the total ecosystem carbon balance and peatfire emissions this study aimed to account for all carbon pools: aboveground, deadwood, pyrogenic carbon (PyC) and peat of single and repeatedly burnt peat forests. A further aim was to identify the minimum sampling intensity required to detect with 80% power significant differences in these carbon pools among long unburnt, recently burnt and repeatedly burnt peat swamp forests. About 90 Mg C ha-1 remains aboveground as deadwood after a single fire and half of this remains after a second fire. One fire produces 4.5 ± 0.6 Mg C ha-1 of PyC, with a second fire increasing this to 7.1 ± 0.8 Mg C ha-1. For peat swamp forests these aboveground carbon pools are rarely accounted in estimates of emissions following multiple fires, while PyC has not been included in the total peat carbon mass balance. Peat bulk density and peat carbon content change with fire frequency, yet these parameters often remain constant in the published emission estimates following a single and multiple fires. Our power analysis indicated that as few as 12 plots are required to detect meaningful differences between fire treatments for the major carbon pools. Further field studies directed at improving the parameters for calculating carbon balance of disturbed peat forest ecosystems are required to better constrain peatfire GHG emission estimates.

5.
Nat Commun ; 9(1): 342, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352254

ABSTRACT

The original version of this Article contained an error in the third sentence of the abstract and incorrectly read "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass", rather than the correct "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) in above-ground live biomass carbon". This has now been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 8(1): 1966, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259276

ABSTRACT

Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 per year (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...