Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 279: 120304, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37536528

ABSTRACT

Cognitive neuroscience assumes that different mental abilities correspond to at least partly separable brain subnetworks and strives to understand their relationships. However, single-task approaches typically revealed multiple brain subnetworks to be involved in performance. Here, we chose a bottom-up approach of investigating the association between structural and functional brain subnetworks, on the one hand, and domain-specific cognitive abilities, on the other. Structural network was identified using machine-learning graph neural network by clustering anatomical brain properties measured in 838 individuals enroled in the WU-Minn Young Adult Human Connectome Project. Functional network was adapted from seven Resting State Networks (7-RSN). We then analyzed the results of 15 cognitive tasks and estimated five latent abilities: fluid reasoning (Gf), crystallized intelligence (Gc), memory (Mem), executive functions (EF), and processing speed (Gs). In a final step we determined linear associations between these independently identified ability and brain entities. We found no one-to-one mapping between latent abilities and brain subnetworks. Analyses revealed that abilities are associated with properties of particular combinations of brain subnetworks. While some abilities are more strongly associated to within-subnetwork connections, others are related with connections between multiple subnetworks. Importantly, domain-specific abilities commonly rely on node(s) as hub(s) to connect with other subnetworks. To test the robustness of our findings, we ran the analyses through several defensible analytical decisions. Together, the present findings allow a novel perspective on the distinct nature of domain-specific cognitive abilities building upon unique combinations of associated brain subnetworks.


Subject(s)
Connectome , Magnetic Resonance Imaging , Young Adult , Humans , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Cognition , Brain , Executive Function , Connectome/methods
2.
iScience ; 25(8): 104706, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35865139

ABSTRACT

Over the last decades, cognitive psychology has come to a fair consensus about the human intelligence ontological structure. However, it remains an open question whether anatomical properties of the brain support the same ontology. The present study explored the ontological structure derived from neuroanatomical networks associated with performance on 15 cognitive tasks indicating various abilities. Results suggest that the brain-derived (neurometric) ontology partly agrees with the cognitive performance-derived (psychometric) ontology complemented with interpretable differences. Moreover, the cortical areas associated with different inferred abilities are segregated, with little or no overlap. Nevertheless, these spatially segregated cortical areas are integrated via denser white matter structural connections as compared with the general brain connectome. The integration of ability-related cortical networks constitutes a neural counterpart to the psychometric construct of general intelligence, while the consistency and difference between psychometric and neurometric ontologies represent crucial pieces of knowledge for theory building, clinical diagnostics, and treatment.

3.
Neuroimage ; 218: 116966, 2020 09.
Article in English | MEDLINE | ID: mdl-32439534

ABSTRACT

Reading is a complex task involving different brain areas. As a crystallized ability, reading is also known to have effects on brain structure and function development. However, there are still open questions about what are the elements of the reading networks and how structural and functional brain measures shape the reading ability. The present study used a data-driven approach to investigate whether reading-related brain structural measures of cortical thickness, myelination, sulcus depth and structural connectivity and functional connectivity from the whole brain can predict individual differences in reading skills. It used different brain measures and performance scores from the Oral Reading Recognition Test (ORRT) measuring reading ability from 998 participants. We revealed reading-related brain areas and connections, and evaluated how well area and connection measures predict reading performance. Interestingly, the combination of all brain measures obtained the best predictions. We further grouped reading-related areas into positive and negative networks, each with four different levels (Core Regions, Extended-Regions 1, 2, 3), representing different correlation levels with the reading scores, and the non-correlated Region irrelevant to reading ability. The Core Regions are composed of areas that are most strongly correlated with reading performance. Insular and frontal opercular cortex, lateral temporal cortex, and early auditory cortex occupy the positive Core Region, while inferior temporal and motor cortex occupy the negative Core Region. Aside from those areas, the present study also found more reading-related areas including visual and language-related areas. In addition, connections predicting reading scores are denser inside the reading-related networks than outside. Together, the present study reveals extended reading networks of the brain and provides an extended data-driven analytical framework to study interpretable brain-behavior relationships, which are transferable also to studying other abilities.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Psychomotor Performance/physiology , Reading , Adult , Brain/diagnostic imaging , Brain Mapping , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Comprehension , Connectome , Female , Humans , Magnetic Resonance Imaging , Male , Myelin Sheath/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Predictive Value of Tests , Recognition, Psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...