Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 81(20): 4176-4190.e6, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34529927

ABSTRACT

Of the eight distinct polyubiquitin (polyUb) linkages that can be assembled, the roles of K48-linked polyUb (K48-polyUb) are the most established, with K48-polyUb modified proteins being targeted for degradation. MINDY1 and MINDY2 are members of the MINDY family of deubiquitinases (DUBs) that have exquisite specificity for cleaving K48-polyUb, yet we have a poor understanding of their catalytic mechanism. Here, we analyze the crystal structures of MINDY1 and MINDY2 alone and in complex with monoUb, di-, and penta-K48-polyUb, identifying 5 distinct Ub binding sites in the catalytic domain that explain how these DUBs sense both Ub chain length and linkage type to cleave K48-polyUb chains. The activity of MINDY1/2 is inhibited by the Cys-loop, and we find that substrate interaction relieves autoinhibition to activate these DUBs. We also find that MINDY1/2 use a non-canonical catalytic triad composed of Cys-His-Thr. Our findings highlight multiple layers of regulation modulating DUB activity in MINDY1 and MINDY2.


Subject(s)
Deubiquitinating Enzymes/metabolism , Polyubiquitin/metabolism , Ubiquitin Thiolesterase/metabolism , Binding Sites , Catalytic Domain , Crystallography , Deubiquitinating Enzymes/genetics , Enzyme Activation , Humans , Kinetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Scattering, Small Angle , Structure-Activity Relationship , Ubiquitin Thiolesterase/genetics , Ubiquitination
2.
PLoS One ; 13(6): e0199197, 2018.
Article in English | MEDLINE | ID: mdl-29958295

ABSTRACT

The activity of Cullin-RING ubiquitin E3 ligases (CRL) is regulated by NEDD8 modification. DCN-like proteins promote Cullin neddylation as scaffold-like E3s. One DCNL, DCNL5, is highly expressed in immune tissue. Here, we provide evidence that DCNL5 may be involved in innate immunity, as it is a direct substrate of the kinase IKKα during immune signalling. We find that upon activation of Toll-like receptors, DCNL5 gets rapidly and transiently phosphorylated on a specific N-terminal serine residue (S41). This phosphorylation event is specifically mediated by IKKα and not IKKß. Our data for the first time provides evidence that DCNL proteins are post-translationally modified in an inducible manner. Our findings also provide the first example of a DCNL member as a kinase substrate in a signalling pathway, indicating that the activity of at least some DCNLs may be regulated.


Subject(s)
I-kappa B Kinase/immunology , Immunity, Innate , Oncogene Proteins/immunology , Peptide Synthases/immunology , Signal Transduction/immunology , Animals , HEK293 Cells , Humans , I-kappa B Kinase/genetics , Mice , NEDD8 Protein/genetics , NEDD8 Protein/immunology , Oncogene Proteins/genetics , Peptide Synthases/genetics , Phosphorylation/genetics , Phosphorylation/immunology , RAW 264.7 Cells , Signal Transduction/genetics
3.
EMBO Rep ; 18(3): 392-402, 2017 03.
Article in English | MEDLINE | ID: mdl-28082312

ABSTRACT

The eight different types of ubiquitin (Ub) chains that can be formed play important roles in diverse cellular processes. Linkage-selective recognition of Ub chains by Ub-binding domain (UBD)-containing proteins is central to coupling different Ub signals to specific cellular responses. The motif interacting with ubiquitin (MIU) is a small UBD that has been characterized for its binding to monoUb. The recently discovered deubiquitinase MINDY-1/FAM63A contains a tandem MIU repeat (tMIU) that is highly selective at binding to K48-linked polyUb. We here identify that this linkage-selective binding is mediated by a single MIU motif (MIU2) in MINDY-1. The crystal structure of MIU2 in complex with K48-linked polyubiquitin chains reveals that MIU2 on its own binds to all three Ub moieties in an open conformation that can only be accommodated by K48-linked triUb. The weak Ub binder MIU1 increases overall affinity of the tMIU for polyUb chains without affecting its linkage selectivity. Our analyses reveal new concepts for linkage selectivity and polyUb recognition by UBDs.


Subject(s)
Amino Acid Motifs , Polyubiquitin/metabolism , Protein Interaction Domains and Motifs , Ubiquitin Thiolesterase/metabolism , Amino Acid Sequence , Conserved Sequence , Models, Biological , Models, Molecular , Polyubiquitin/chemistry , Protein Binding , Protein Conformation , Tandem Repeat Sequences , Ubiquitin Thiolesterase/chemistry , Ubiquitination
4.
Mol Cell ; 63(1): 146-55, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27292798

ABSTRACT

Deubiquitinating enzymes (DUBs) remove ubiquitin (Ub) from Ub-conjugated substrates to regulate the functional outcome of ubiquitylation. Here we report the discovery of a new family of DUBs, which we have named MINDY (motif interacting with Ub-containing novel DUB family). Found in all eukaryotes, MINDY-family DUBs are highly selective at cleaving K48-linked polyUb, a signal that targets proteins for degradation. We identify the catalytic activity to be encoded within a previously unannotated domain, the crystal structure of which reveals a distinct protein fold with no homology to any of the known DUBs. The crystal structure of MINDY-1 (also known as FAM63A) in complex with propargylated Ub reveals conformational changes that realign the active site for catalysis. MINDY-1 prefers cleaving long polyUb chains and works by trimming chains from the distal end. Collectively, our results reveal a new family of DUBs that may have specialized roles in regulating proteostasis.


Subject(s)
Deubiquitinating Enzymes/metabolism , Evolution, Molecular , Polyubiquitin/metabolism , Amino Acid Sequence , Catalytic Domain , Conserved Sequence , Deubiquitinating Enzymes/chemistry , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Folding , Structure-Activity Relationship , Substrate Specificity , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism , Ubiquitination
5.
Mol Cell ; 58(1): 83-94, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25752573

ABSTRACT

Polyubiquitin chains regulate diverse cellular processes through the ability of ubiquitin to form chains of eight different linkage types. Although detected in yeast and mammals, little is known about K29-linked polyubiquitin. Here we report the generation of K29 chains in vitro using a ubiquitin chain-editing complex consisting of the HECT E3 ligase UBE3C and the deubiquitinase vOTU. We determined the crystal structure of K29-linked diubiquitin, which adopts an extended conformation with the hydrophobic patches on both ubiquitin moieties exposed and available for binding. Indeed, the crystal structure of the NZF1 domain of TRABID in complex with K29 chains reveals a binding mode that involves the hydrophobic patch on only one of the ubiquitin moieties and exploits the flexibility of K29 chains to achieve linkage selective binding. Further, we establish methods to study K29-linked polyubiquitin and find that K29 linkages exist in cells within mixed or branched chains containing other linkages.


Subject(s)
Endopeptidases/chemistry , Lysine/chemistry , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Endopeptidases/genetics , Endopeptidases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Lysine/metabolism , Models, Molecular , Molecular Sequence Data , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
6.
Biochem J ; 467(2): 345-52, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25723849

ABSTRACT

Ubiquitylation regulates a multitude of biological processes and this versatility stems from the ability of ubiquitin (Ub) to form topologically different polymers of eight different linkage types. Whereas some linkages have been studied in detail, other linkage types including Lys33-linked polyUb are poorly understood. In the present study, we identify an enzymatic system for the large-scale assembly of Lys33 chains by combining the HECT (homologous to the E6-AP C-terminus) E3 ligase AREL1 (apoptosis-resistant E3 Ub protein ligase 1) with linkage selective deubiquitinases (DUBs). Moreover, this first characterization of the chain selectivity of AREL1 indicates its preference for assembling Lys33- and Lys11-linked Ub chains. Intriguingly, the crystal structure of Lys33-linked diUb reveals that it adopts a compact conformation very similar to that observed for Lys11-linked diUb. In contrast, crystallographic analysis of Lys33-linked triUb reveals a more extended conformation. These two distinct conformational states of Lys33-linked polyUb may be selectively recognized by Ub-binding domains (UBD) and enzymes of the Ub system. Importantly, our work provides a method to assemble Lys33-linked polyUb that will allow further characterization of this atypical chain type.


Subject(s)
Lysine/chemistry , Polyubiquitin/chemistry , Protein Folding , Ubiquitin-Protein Ligases/chemistry , Animals , Humans , Lysine/genetics , Lysine/metabolism , Polyubiquitin/genetics , Polyubiquitin/metabolism , Protein Structure, Quaternary , Protein Structure, Tertiary , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...