Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(1): e86948, 2014.
Article in English | MEDLINE | ID: mdl-24475199

ABSTRACT

The fission yeast, Schizosaccharomyces pombe, is a well-established model for heterochromatin formation, but the exact sequence of events for initiation remains to be elucidated. The essential factors involved include RNA transcribed from repeated sequences together with the methyltransferase Clr4. In addition, histone deacetylases, like Clr3, found in the SHREC complex are also necessary for transcriptional silencing. Clr2 is another crucial factor required for heterochromatin formation found in the SHREC complex. The function of Clr2 has been difficult to establish due to the lack of conserved domains or homology to proteins of known molecular function. Using a bioinformatics approach, three conserved motifs in Clr2 were identified, which contained amino acids important for transcriptional repression. Analysis of clr2 mutant strains revealed a major role for Clr2 in mating-type and rDNA silencing, and weaker effects on centromeric silencing. The effect on mating-type silencing showed variegation in several of the strains with mutated versions of Clr2 indicating an establishment or maintenance defect. Moreover, the critical amino acids in Clr2 were also necessary for transcriptional repression in a minimal system, by the tethering of Clr4 upstream of a reporter gene, inserted into the euchromatic part of the genome. Finally, in silico modeling suggested that the mutations in Clr2 cause disruption of secondary structures in the Clr2 protein. Identification of these critical amino acids in the protein provides a useful tool to explore the molecular mechanism behind the role of Clr2 in heterochromatin formation.


Subject(s)
Heterochromatin/genetics , Repressor Proteins/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Transcription Factors/genetics , Amino Acid Motifs/genetics , Blotting, Western , Computational Biology , DNA Primers/genetics , Heterochromatin/metabolism , Molecular Dynamics Simulation , Mutation/genetics , Repressor Proteins/metabolism , Schizosaccharomyces/metabolism
2.
Genome Res ; 20(3): 361-71, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20086243

ABSTRACT

Gene transcription is associated with local changes in chromatin, both in nucleosome positions and in chemical modifications of the histones. Chromatin dynamics has mostly been studied on a single-gene basis. Those genome-wide studies that have been made primarily investigated steady-state transcription. However, three studies of genome-wide changes in chromatin during the transcriptional response to heat shock in the budding yeast Saccharomyces cerevisiae revealed nucleosome eviction in promoter regions but only minor effects in coding regions. Here, we describe the short-term response to nitrogen starvation in the fission yeast Schizosaccharomyces pombe. Nitrogen depletion leads to a fast induction of a large number of genes in S. pombe and is thus suitable for genome-wide studies of chromatin dynamics during gene regulation. After 20 min of nitrogen removal, 118 transcripts were up-regulated. The distribution of regulated genes throughout the genome was not random; many up-regulated genes were found in clusters, while large parts of the genome were devoid of up-regulated genes. Surprisingly, this up-regulation was associated with nucleosome eviction of equal magnitudes in the promoters and in the coding regions. The nucleosome loss was not limited to induction by nitrogen depletion but also occurred during cadmium treatment. Furthermore, the lower nucleosome density persisted for at least 60 min after induction. Two highly induced genes, urg1(+) and urg2(+), displayed a substantial nucleosome loss, with only 20% of the nucleosomes being left in the coding region. We conclude that nucleosome loss during transcriptional activation is not necessarily limited to promoter regions.


Subject(s)
Nitrogen/physiology , Nucleosomes/physiology , Regulatory Sequences, Nucleic Acid , Schizosaccharomyces/genetics , Chromatin/genetics , Chromosomes, Fungal/metabolism , Genome , Histones/metabolism , Open Reading Frames/genetics , Saccharomyces cerevisiae/genetics , Schizosaccharomyces/metabolism , Transcriptional Activation , Up-Regulation
3.
Chromosoma ; 118(1): 99-112, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18936951

ABSTRACT

There are several documented events of changes in subnuclear localization during gene activation. However, there are conflicting data on whether the nuclear periphery is a compartment for gene repression or activation and whether genes are moved to the pores at the nuclear membrane (NM) or not during gene activation. Nitrogen starvation of fission yeast serves as a good model system for studying gene induction, as it causes fast regulation of hundreds of genes. In this study, the subnuclear localization of two gene clusters repressed by nitrogen was investigated. During normal growth conditions, the gene clusters localized to the nuclear periphery at the opposite side of the nucleus as compared to the spindle pole body. This constrained localization was dependent on the histone deacetylase Clr3, known to transcriptionally repress genes in these clusters. Already 20 min after nitrogen depletion, drastic changes in subnuclear localization of the two loci were observed, away from the NM toward the nuclear interior. At least for one of the clusters, the movement was clearly transcription dependent. Data presented in this paper illustrates how interconnected events of gene activation and nuclear reorganization are as well as provides a suggestion of how nuclear organization might be maintained.


Subject(s)
Chromatin/metabolism , Genes, Fungal/genetics , Nitrogen/metabolism , Schizosaccharomyces/physiology , Chromatin/genetics , Gene Expression Regulation, Fungal , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...