Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(42): 15465-15471, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37824441

ABSTRACT

Recently, we introduced an optimized and automated Multi-Attribute Method (MAM) workflow, which (a) significantly reduces the number of missed cleavages using an automated two-step digestion procedure and (b) dramatically reduces chromatographic peak tailing and carryover of hydrophobic peptides by implementing less retentive reversed-phase column chemistries. Here, further insights are provided on the impact of postdigest acidification and the importance of maintaining hydrophobic peptides in solution using strong chaotropic agents after digestion. We demonstrate how oxidation can significantly increase the solubility of hydrophobic peptides, a fact that can have a profound impact on quantitation of oxidation levels if care is not taken in MAM workflows. We conclude that (a) postdigestion acidification can result in significant acid-catalyzed deamidation during storage in an autosampler at 5 °C and (b) a strong chaotropic agent, such as guanidine hydrochloride, is critical for preventing loss of hydrophobic peptides through adsorption, which can result in (sometimes extreme) biases in quantitation of tryptophan oxidation levels. An optimized method is presented, which effectively addressed acid-catalyzed deamidation and solubility of hydrophobic peptides in MAM workflows.


Subject(s)
Peptides , Workflow , Solubility , Peptides/chemistry , Catalysis
2.
Anal Chem ; 94(49): 17195-17204, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36346901

ABSTRACT

Peptide mapping by liquid chromatography mass spectrometry (LC-MS) and the related multi-attribute method (MAM) are well-established analytical tools for verification of the primary structure and mapping/quantitation of co- and post-translational modifications (PTMs) or product quality attributes in biopharmaceutical development. Proteolytic digestion is a key step in peptide mapping workflows, which traditionally is labor-intensive, involving multiple manual steps. Recently, simple high-temperature workflows with automatic digestion were introduced, which facilitate robustness and reproducibility across laboratories. Here, a modified workflow with an automatic digestion step is presented, which includes a two-step digestion at high and low temperatures, as opposed to the original one-step digestion at a high temperature. The new automatic digestion workflow significantly reduces the number of missed cleavages, obtaining a more complete digestion profile. In addition, we describe how chromatographic peak tailing and carry-over is dramatically reduced for hydrophobic peptides by switching from the traditional C18 reversed-phase (RP) column chemistry used for peptide mapping to a less retentive C4 column chemistry. No negative impact is observed on MS/MS-derived sequence coverage when switching to a C4 column chemistry. Overall, the new peptide mapping workflow significantly reduces the number of missed cleavages, yielding more robust and simple data interpretation, while providing dramatically reduced tailing and carry-over of hydrophobic peptides.


Subject(s)
Peptides , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Reproducibility of Results , Chromatography, Liquid/methods , Peptide Mapping/methods , Peptides/chemistry , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...