Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 225: 115372, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36709027

ABSTRACT

In chemical risk assessment, measured or modelled environmental concentrations are compared to environmental exposure limits (EELs), such as Predicted No Effect Concentrations (PNECs) or hazardous concentrations for 5% of species (HC05s) derived from species sensitivity distributions (SSDs). However, for many chemicals the EELs include large uncertainties or, in the worst case, the necessary data for their estimation are completely missing. This makes the assessment of chemical risks and any subsequent implementation of management strategies challenging. In this study we analyzed the uncertainty of EELs and its impact on chemical risk assessment. First, we compared three individual EEL datasets, two primarily based on experimental data and one based on computational predictions. The comparison demonstrates large disagreements between EEL data sources, with experimentally derived EELs differing by more than seven orders of magnitude. In a case-study, based on the predicted emissions of 2005 chemicals, we showed that these uncertainties lead to significantly different risk assessment outcomes, including large differences in the magnitude of the total risk, risk driver identification, and the ranking of use categories as risk contributors. We also show that the large data-gaps in EEL datasets cannot be covered by commonly used computational approaches (QSARs). We conclude that an expanded framework for interpreting risk characterization outcomes is needed. We also argue that the large data-gaps present in ecotoxicological data need to be addressed in order to achieve the European zero pollution vision as the growing emphasis on ambient exposures will further increase the demand for accurate and well-established EELs.


Subject(s)
Environmental Exposure , Risk Assessment
2.
Chemosphere ; 287(Pt 1): 131854, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34461333

ABSTRACT

Chemical emissions from households originate from a wide range of sources and results in highly diverse mixtures. This makes traditional monitoring based on analytical chemistry challenging, especially for compounds that appear in low concentrations. We therefore developed a method for predicting emissions of chemicals from households into wastewater, relying on consumption patterns from multiple data sources. The method was then used to predict the emissions of chemical preparations, chemicals leaching from textiles and prescription pharmaceuticals in Sweden. In total we predicted emissions of 2007 chemicals with a combined emission of 62,659 tonnes per year - or 18 g/person and day. Of the emitted chemicals, 2.0% (w/w) were either classified as hazardous to the environment or were both persistent and mobile. We also show that chemical emissions come from a wide range of uses and that the total emission of any individual chemical is determined primarily by its use pattern, not by the total amount used. This emphasizes the need for continuous updates and additional knowledge generation both on emission factors and excretion rates as well as a need for improved reporting on the intended use of individual chemicals. Finally, we scrutinize the model and its uncertainty and suggest areas that need improvement to increase the accuracy of future emission modelling. We conclude that emission modelling can help guide environmental monitoring and provide input into management strategies aimed at reducing the environmental effect caused by hazardous chemicals.


Subject(s)
Pharmaceutical Preparations , Wastewater , Environmental Monitoring , Hazardous Substances/analysis , Humans , Textiles
3.
Philos Trans R Soc Lond B Biol Sci ; 369(1656)2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25405965

ABSTRACT

Fish represent the planet's most diverse group of vertebrates and they can be exposed to a wide range of pharmaceuticals. For practical reasons, extrapolation of pharmaceutical effects from 'model' species to other fish species is adopted in risk assessment. Here, we critically assess this approach. First, we show that between 65% and 86% of human drug targets are evolutionarily conserved in 12 diverse fish species. Focusing on nuclear steroid hormone receptors, we further show that the sequence of the ligand binding domain that plays a key role in drug potency is highly conserved, but there is variation between species. This variation for the oestrogen receptor, however, does not obviously account for observed differences in receptor activation. Taking the synthetic oestrogen ethinyloestradiol as a test case, and using life-table-response experiments, we demonstrate significant reductions in population growth in fathead minnow and medaka, but not zebrafish, for environmentally relevant exposures. This finding contrasts with zebrafish being ranked as more ecologically susceptible, according to two independent life-history analyses. We conclude that while most drug targets are conserved in fish, evolutionary divergence in drug-target activation, physiology, behaviour and ecological life history make it difficult to predict population-level effects. This justifies the conventional use of at least a 10× assessment factor in pharmaceutical risk assessment, to account for differences in species susceptibility.


Subject(s)
Fishes/genetics , Fishes/physiology , Pharmaceutical Preparations/chemistry , Water Pollutants, Chemical/toxicity , Amino Acid Sequence , Animals , Biological Evolution , Ecosystem , Models, Biological , Phylogeny , Sequence Alignment , Species Specificity , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...