Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Microb Cell Fact ; 21(1): 220, 2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36274123

ABSTRACT

BACKGROUND: The marine thermophilic bacterium Rhodothermus marinus can degrade many polysaccharides which makes it interesting as a future cell factory. Progress using this bacterium has, however, been hampered by limited knowledge on media and conditions for biomass production, often resulting in low cell yields and low productivity, highlighting the need to develop conditions that allow studies of the microbe on molecular level. This study presents development of defined conditions that support growth, combined with evaluation of production of carotenoids and exopolysaccharides (EPSs) by R. marinus strain DSM 16675. RESULTS: Two defined media were initially prepared: one including a low addition of yeast extract (modified Wolfe's medium) and one based on specific components (defined medium base, DMB) to which two amino acids (N and Q), were added. Cultivation trials of R. marinus DSM 16675 in shake flasks, resulted in maximum cell densities (OD620 nm) of 2.36 ± 0.057, cell dry weight (CDW) 1.2 ± 0.14 mg/L, total carotenoids 0.59 × 10-3 mg/L, and EPSs 1.72 ± 0.03 mg/L using 2 g/L glucose in DMB. In Wolfe's medium (supplemented by 0.05 g/L yeast extract and 2.5 g/L glucose), maximum OD620 nm was 2.07 ± 0.05, CDW 1.05 ± 0.07 mg/L, total carotenoids 0.39 × 10-3 mg/L, and EPSs 1.74 ± 0.2 mg/L. Growth trials at 5 g/L glucose in these media either failed or resulted in incomplete substrate utilization. To improve reproducibility and increase substrate utilization, a screening of macroelements (e.g. phosphate) in DMB, was combined with use of trace elements and vitamins of the modified Wolfe's medium. The resulting defined minimal R. marinus medium, (DRM), allowed reproducible cultivations to a final OD620nm of 6.6 ± 0.05, CDW 2.85 ± 0.07 mg/L, a maximum specific growth rate (µmax) of 0.26 h-1, total carotenoids 0.77 × 10-3 mg/L and EPSs 3.4 ± 0.17 mg/L in cultivations supplemented with up to 5 g/L glucose. CONCLUSION: A minimal defined medium (DRM) was designed that resulted in reproducible growth and an almost doubled formation of both total carotenoids and EPSs. Such defined conditions, are necessary for systematic studies of metabolic pathways, to determine the specific requirements for growth and fully characterize metabolite production.


Subject(s)
Extremophiles , Trace Elements , Carotenoids , Glucose/metabolism , Extremophiles/metabolism , Culture Media/chemistry , Reproducibility of Results , Polysaccharides , Amino Acids , Vitamins , Phosphates
3.
Sci Rep ; 11(1): 9586, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953310

ABSTRACT

Thermophilic organisms are extensively studied in industrial biotechnology, for exploration of the limits of life, and in other contexts. Their optimal growth at high temperatures presents a challenge for the development of genetic tools for their genome editing, since genetic markers and selection substrates are often thermolabile. We sought to develop a thermostable CRISPR-Cas9 based system for genome editing of thermophiles. We identified CaldoCas9 and designed an associated guide RNA and showed that the pair have targetable nuclease activity in vitro at temperatures up to 65 °C. We performed a detailed characterization of the protospacer adjacent motif specificity of CaldoCas9, which revealed a preference for 5'-NNNNGNMA. We constructed a plasmid vector for the delivery and use of the CaldoCas9 based genome editing system in the extreme thermophile Thermus thermophilus at 65 °C. Using the vector, we generated gene knock-out mutants of T. thermophilus, targeting genes on the bacterial chromosome and megaplasmid. Mutants were obtained at a frequency of about 90%. We demonstrated that the vector can be cured from mutants for a subsequent round of genome editing. CRISPR-Cas9 based genome editing has not been reported previously in the extreme thermophile T. thermophilus. These results may facilitate development of genome editing tools for other extreme thermophiles and to that end, the vector has been made available via the plasmid repository Addgene.


Subject(s)
Genome, Bacterial , Mutation , Thermus thermophilus/genetics , CRISPR-Cas Systems , Gene Editing , Temperature
4.
Metab Eng Commun ; 11: e00140, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32793416

ABSTRACT

Rhodothermus marinus has the potential to be well suited for biorefineries, as an aerobic thermophile that produces thermostable enzymes and is able to utilize polysaccharides from different 2nd and 3rd generation biomass. The bacterium produces valuable chemicals such as carotenoids. However, the native carotenoids are not established for industrial production and R. marinus needs to be genetically modified to produce higher value carotenoids. Here we genetically modified the carotenoid biosynthetic gene cluster resulting in three different mutants, most importantly the lycopene producing mutant TK-3 (ΔtrpBΔpurAΔcruFcrtB::trpBcrtB T.thermophilus ). The genetic modifications and subsequent structural analysis of carotenoids helped clarify the carotenoid biosynthetic pathway in R. marinus. The nucleotide sequences encoding the enzymes phytoene synthase (CrtB) and the previously unidentified 1',2'-hydratase (CruF) were found fused together and encoded by a single gene in R. marinus. Deleting only the cruF part of the gene did not result in an active CrtB enzyme. However, by deleting the entire gene and inserting the crtB gene from Thermus thermophilus, a mutant strain was obtained, producing lycopene as the sole carotenoid. The lycopene produced by TK-3 was quantified as 0.49 â€‹g/kg CDW (cell dry weight).

5.
Microb Cell Fact ; 18(1): 186, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31665018

ABSTRACT

BACKGROUND: Lactobacillus reuteri is a heterofermentative Lactic Acid Bacterium (LAB) that is commonly used for food fermentations and probiotic purposes. Due to its robust properties, it is also increasingly considered for use as a cell factory. It produces several industrially important compounds such as 1,3-propanediol and reuterin natively, but for cell factory purposes, developing improved strategies for engineering and fermentation optimization is crucial. Genome-scale metabolic models can be highly beneficial in guiding rational metabolic engineering. Reconstructing a reliable and a quantitatively accurate metabolic model requires extensive manual curation and incorporation of experimental data. RESULTS: A genome-scale metabolic model of L. reuteri JCM 1112T was reconstructed and the resulting model, Lreuteri_530, was validated and tested with experimental data. Several knowledge gaps in the metabolism were identified and resolved during this process, including presence/absence of glycolytic genes. Flux distribution between the two glycolytic pathways, the phosphoketolase and Embden-Meyerhof-Parnas pathways, varies considerably between LAB species and strains. As these pathways result in different energy yields, it is important to include strain-specific utilization of these pathways in the model. We determined experimentally that the Embden-Meyerhof-Parnas pathway carried at most 7% of the total glycolytic flux. Predicted growth rates from Lreuteri_530 were in good agreement with experimentally determined values. To further validate the prediction accuracy of Lreuteri_530, the predicted effects of glycerol addition and adhE gene knock-out, which results in impaired ethanol production, were compared to in vivo data. Examination of both growth rates and uptake- and secretion rates of the main metabolites in central metabolism demonstrated that the model was able to accurately predict the experimentally observed effects. Lastly, the potential of L. reuteri as a cell factory was investigated, resulting in a number of general metabolic engineering strategies. CONCLUSION: We have constructed a manually curated genome-scale metabolic model of L. reuteri JCM 1112T that has been experimentally parameterized and validated and can accurately predict metabolic behavior of this important platform cell factory.


Subject(s)
Limosilactobacillus reuteri , Metabolic Engineering , Probiotics/metabolism , Fermentation , Limosilactobacillus reuteri/genetics , Limosilactobacillus reuteri/growth & development , Limosilactobacillus reuteri/metabolism
6.
Ann Bot ; 122(2): 337-348, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29790908

ABSTRACT

Background and Aims: Grassland-based livestock systems in cool maritime regions are commonly dominated by grass monocultures receiving relatively high levels of fertilizer. The current study investigated whether grass-legume mixtures can improve the productivity, resource efficiency and robustness of yield persistence of cultivated grassland under extreme growing conditions over a period of 5 years. Methods: Monocultures and mixtures of two grasses (Phleum pratense and Festuca pratensis) and two legumes (Trifolium pratense and Trifolium repens), one of which was fast establishing and the other temporally persistent, were sown in a field trial. Relative abundance of the four species in the mixtures was systematically varied at sowing. The plots were maintained under three N levels (20, 70 and 220 kg N ha-1 year-1) and harvested twice a year for five consecutive years. Yields of individual species and interactions between all species present were modelled to estimate the species diversity effects. Key Results: Significant positive diversity effects in all individual years and averaged across the 5 years were observed. Across years, the four-species equi-proportional mixture was 71 % (N20: 20 kg N ha-1 year-1) and 51 % (N70: 70 kg N ha-1 year-1) more productive than the average of monocultures, and the highest yielding mixture was 36 % (N20) and 39 % (N70) more productive than the highest yielding monoculture. Importantly, diversity effects were also evident at low relative abundances of either species group, grasses or legumes in the mixture. Mixtures suppressed weeds significantly better than monocultures consistently during the course of the experiment at all N levels. Conclusions: The results show that even in the less productive agricultural systems in the cool maritime regions grass-legume mixtures can contribute substantially and persistently to a more sustainable agriculture. Positive grass-legume interactions suggest that symbiotic N2 fixation is maintained even under these marginal conditions, provided that adapted species and cultivars are used.


Subject(s)
Agriculture/methods , Biodiversity , Fabaceae/growth & development , Nitrogen Fixation , Poaceae/growth & development , Biomass , Festuca/growth & development , Grassland , Nitrogen , Phleum/growth & development , Symbiosis , Trifolium/growth & development
7.
Microbiologyopen ; 7(1)2018 02.
Article in English | MEDLINE | ID: mdl-29045010

ABSTRACT

Rhodothermus marinus, a marine aerobic thermophile, was first isolated from an intertidal hot spring in Iceland. In recent years, the R. marinus strain PRI 493 has been genetically modified, which opens up possibilities for targeted metabolic engineering of the species, such as of the carotenoid biosynthetic pathway. In this study, the carotenoids of the R. marinus type-strain DSM 4252T , strain DSM 4253, and strain PRI 493 were characterized. Bioreactor cultivations were used for pressurized liquid extraction and analyzed by ultra-high performance supercritical fluid chromatography with diode array and quadropole time-of-flight mass spectrometry detection (UHPSFC-DAD-QTOF/MS). Salinixanthin, a carotenoid originally found in Salinibacter ruber and previously detected in strain DSM 4253, was identified in all three R. marinus strains, both in the hydroxylated and nonhydroxylated form. Furthermore, an additional and structurally distinct carotenoid was detected in the three strains. MS/MS fragmentation implied that the mass difference between salinixanthin and the novel carotenoid structure corresponded to the absence of a 4-keto group on the ß-ionone ring. The study confirmed the lack of carotenoids for the strain SB-71 (ΔtrpBΔpurAcrtBI'::trpB) in which genes encoding two enzymes of the proposed pathway are partially deleted. Moreover, antioxidant capacity was detected in extracts of all the examined R. marinus strains and found to be 2-4 times lower for the knock-out strain SB-71. A gene cluster with 11 genes in two operons in the R. marinusDSM 4252T genome was identified and analyzed, in which several genes were matched with carotenoid biosynthetic pathway genes in other organisms.


Subject(s)
Carotenoids/analysis , Rhodothermus/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Aquatic Organisms/chemistry , Aquatic Organisms/growth & development , Bioreactors/microbiology , Carotenoids/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry , Rhodothermus/growth & development
8.
Ann Bot ; 102(5): 825-34, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18772149

ABSTRACT

BACKGROUND AND AIMS: White clover (Trifolium repens) is an important component of sustainable livestock systems around the world. Its exploitation for agriculture in the northern, marginal areas is, however, currently limited by the lack of cultivars that combine persistence and high production potential. The aims are to investigate whether it is feasible to create breeding material of white clover for these areas by combining winter hardiness of northerly populations with good yielding ability of more southerly cultivars. METHODS: A total of 166 crosses of 14 different parental combinations between winter-hardy, low-yielding populations of northern origin and high-yielding commercial cultivars of more southerly origin were tested under field conditions in Iceland and Norway and the parental populations were compared in Norway. Spaced plants were transplanted into a smooth meadow grass (Poa pratensis) sward. Dry matter yield was estimated for 2 years after planting in Norway and morphological characters associated with yielding capacity were measured at both sites. KEY RESULTS: The results showed that southerly cultivars had larger leaves and higher yielding potential than northern types but suffered more winter damage. Significant variation was found between full-sib families within the different parental combinations for all morphological characteristics measured in all three trials. However, it was difficult to detect any consistent morphological patterns between progeny groups across trial sites. No significant correlations were found between leaflet area and survival. CONCLUSIONS: The present study has confirmed that it should be possible to simultaneously select for good winter survival and larger leaves and, hence, higher yielding ability under marginal conditions.


Subject(s)
Adaptation, Physiological , Agriculture , Environment , Seasons , Trifolium/growth & development , Trifolium/physiology , Air , Crosses, Genetic , Flowers/anatomy & histology , Iceland , Norway , Plant Leaves/anatomy & histology , Rain , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...