Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 127(48): 10339-10355, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37984360

ABSTRACT

As iron powder nowadays attracts research attention as a carbon-free, circular energy carrier, molecular dynamics (MD) simulations can be used to better understand the mechanisms of liquid iron oxidation at elevated temperatures. However, prudence must be practiced in the selection of a reactive force field. This work investigates the influence of currently available reactive force fields (ReaxFFs) on a number of properties of the liquid iron-oxygen (Fe-O) system derived (or resulting) from MD simulations. Liquid Fe-O systems are considered over a range of oxidation degrees ZO, which represents the molar ratio of O/(O + Fe), with 0 < ZO < 0.6 and at a constant temperature of 2000 K, which is representative of the combustion temperature of micrometric iron particles burning in air. The investigated properties include the minimum energy path, system structure, (im)miscibility, transport properties, and the mass and thermal accommodation coefficients. The properties are compared to experimental values and thermodynamic calculation results if available. Results show that there are significant differences in the properties obtained with MD using the various ReaxFF parameter sets. Based on the available experimental data and equilibrium calculation results, an improved ReaxFF is required to better capture the properties of a liquid Fe-O system.

2.
J Chem Phys ; 158(5): 054109, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36754820

ABSTRACT

Reactive Molecular Dynamics (MD) and Density Functional Theory (DFT) computations are performed to provide insight into the effects of external electrostatic fields on hydrocarbon reaction kinetics. By comparing the results from MD and DFT, the suitability of the MD method in modeling electrodynamics is first assessed. Results show that the electric field-induced polarization predicted by the MD charge equilibration method is in good agreement with various DFT charge partitioning schemes. Then, the effects of oriented external electric fields on the transition pathways of non-redox reactions are investigated. Results on the minimum energy path suggest that electric fields can cause catalysis or inhibition of oxidation reactions, whereas pyrolysis reactions are not affected due to the weaker electronegativity of the hydrogen and carbon atoms. MD simulations of isolated reactions show that the reaction kinetics is also affected by applied external Lorentz forces and interatomic Coulomb forces since they can increase or decrease the energy of collision depending on the molecular conformation. In addition, electric fields can affect the kinetics of polar species and force them to align in the direction of field lines. These effects are attributed to energy transfer via intermolecular collisions and stabilization under the external Lorentz force. The kinetics of apolar species is not significantly affected mainly due to the weak induced dipole moment even under strong electric fields. The dynamics and reaction rates of species are studied by means of large-scale combustion simulations of n-dodecane and oxygen mixtures. Results show that under strong electric fields, the fuel, oxidizer, and most product molecules experience translational and rotational acceleration mainly due to close charge transfer along with a reduction in their vibrational energy due to stabilization. This study will serve as a basis to improve the current methods used in MD and to develop novel methodologies for the modeling of macroscale reacting flows under external electrostatic fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...