Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38429623

ABSTRACT

Heat shock protein 70 (HSP70) is activated under stress response. Its involvement in cell protection, including energy metabolism and quality control makes it a promising pharmacological target. A strategy to increase HSP70 levels inside the cells is the application of recombinant HSP70. However, cell permeability and functionality of these exogenously applied proteins inside the cells is still disputable. Here, using fluorescence- labeled HSP70, we have studied permeability and distribution of HSP70 inside primary neurons and astrocytes, and how exogenous HSP70 changes mitochondrial metabolism and mitophagy. We have found that exogenous recombinant HSP70 can penetrate the neurons and astrocytes and distributes in mitochondria, lysosomes and in lesser degree in the endoplasmic reticulum. HSP70 increases mitochondrial membrane potential in control neurons and astrocytes, and in fibroblasts of patients with familial Parkinson´s disease (PD) with PINK1 and LRRK2 mutations. Increased mitochondrial membrane potential was associated with higher mitochondrial ROS production and activation of mitophagy. Importantly, preincubation of the cells with HSP70 protected neurons and astrocytes against cell death in a toxic model of PD induced by rotenone, and in the PINK1 and LRRK2 PD human fibroblasts. Thus, exogenous recombinant HSP70 is cell permeable, and acts as endogenous HSP70 protecting cells in the case of toxic model and familial forms of Parkinson's Disease.

2.
Biomedicines ; 12(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38397882

ABSTRACT

The mitochondrial network (MN) is a dynamic structure undergoing constant remodeling in the cell. It is assumed that perturbations to the MN may be associated with various pathologies, including Parkinson's disease (PD). Using automatic image analysis and super-resolution microscopy, we have assessed the MN parameters in fibroblasts from patients with established hereditary PD mutations (associated with PINK1, LRRK2, and α-synuclein, as well as PINK1 and Parkin proteins simultaneously) under normal conditions and after hydrogen peroxide-induced stress. Fibroblasts with the Pink1/Parkin mutation are most different in morphology to fibroblasts obtained from conditionally healthy donors: the MN is larger, and it contains longer mitochondria and accumulated individual mitochondria. In addition to MN, we evaluated other cellular parameters, such as cytosolic and mitochondrial ROS production and mitochondrial membrane potential. It has been shown that mitochondria of fibroblasts with mutations in genes encoding PINK1, α-synuclein, and Pink/Parkin tend towards hyperpolarization and cytosolic ROS overproduction, while mitochondrial ROS production was higher only in fibroblasts with PINK1 and α-synuclein mutations.

3.
Biomedicines ; 10(11)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36359351

ABSTRACT

Parkinson's disease (PD) is a ubiquitous neurodegenerative disorder for which no effective treatment strategies are available. Existing pharmacotherapy is aimed only at correcting symptoms and slowing the progression of the disease, mainly by replenishing dopamine deficiency. It is assumed that mitochondrial dysfunction plays a key role in the pathogenesis of PD. It has been suggested that activation of specific degradation of damaged mitochondria (mitophagy) may prevent cell death. An almost exclusive way to initiate mitophagy is acidification of intracellular pH. We attempted to implement transient brain acidification using two experimental therapy strategies: forced moderate physical activity and high CO2 inhalation. The beneficial effects of CO2 supplementation on behavioral aspects were demonstrated in a rotenone-induced PD model. Mice treated with CO2 restored their exploratory behavior and total locomotor activity lost after rotenone administration. Additionally, this treatment enabled the removal of impaired coordination. We have illustrated this therapeutic strategy using histological studies of brain sections to confirm the survival of nigrostriatal areas. These findings suggest that high CO2 inhalation presumably initiates mitophagy via transient brain acidification, and can treat PD-like symptoms in a rodent rotenone model of PD.

SELECTION OF CITATIONS
SEARCH DETAIL
...