Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Metab ; 10(1): 24, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494842

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) lacks effective treatment options beyond chemotherapy. Although molecular subtypes such as classical and QM (quasi-mesenchymal)/basal-like with transcriptome-based distinct signatures have been identified, deduced therapeutic strategies and targets remain elusive. Gene expression data show enrichment of glycolytic genes in the more aggressive and therapy-resistant QM subtype. However, whether the glycolytic transcripts are translated into functional glycolysis that could further be explored for metabolic targeting in QM subtype is still not known. METHODS: We used different patient-derived PDAC model systems (conventional and primary patient-derived cells, patient-derived xenografts (PDX), and patient samples) and performed transcriptional and functional metabolic analysis. These included RNAseq and Illumina HT12 bead array, in vitro Seahorse metabolic flux assays and metabolic drug targeting, and in vivo hyperpolarized [1-13C]pyruvate and [1-13C]lactate magnetic resonance spectroscopy (HP-MRS) in PDAC xenografts. RESULTS: We found that glycolytic metabolic dependencies are not unambiguously functionally exposed in all QM PDACs. Metabolic analysis demonstrated functional metabolic heterogeneity in patient-derived primary cells and less so in conventional cell lines independent of molecular subtype. Importantly, we observed that the glycolytic product lactate is actively imported into the PDAC cells and used in mitochondrial oxidation in both classical and QM PDAC cells, although more actively in the QM cell lines. By using HP-MRS, we were able to noninvasively identify highly glycolytic PDAC xenografts by detecting the last glycolytic enzymatic step and prominent intra-tumoral [1-13C]pyruvate and [1-13C]lactate interconversion in vivo. CONCLUSION: Our study adds functional metabolic phenotyping to transcriptome-based analysis and proposes a functional approach to identify highly glycolytic PDACs as candidates for antimetabolic therapeutic avenues.

2.
Biomedicines ; 9(2)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513763

ABSTRACT

Hyperpolarized 13C nuclear magnetic resonance spectroscopy can characterize in vivo tissue metabolism, including preclinical models of cancer and inflammatory disease. Broad bandwidth radiofrequency excitation is often paired with free induction decay readout for spectral separation, but quantification of low-signal downstream metabolites using this method can be impeded by spectral peak overlap or when frequency separation of the detected peaks exceeds the excitation bandwidth. In this work, alternating frequency narrow bandwidth (250 Hz) slice-selective excitation was used for 13C spectroscopy at 7 T in a subcutaneous xenograft rat model of human pancreatic cancer (PSN1) to improve quantification while measuring the dynamics of injected hyperpolarized [1-13C]lactate and its metabolite [1-13C]pyruvate. This method does not require sophisticated pulse sequences or specialized radiofrequency and gradient pulses, but rather uses nominally spatially offset slices to produce alternating frequency excitation with simpler slice-selective radiofrequency pulses. Additionally, point-resolved spectroscopy was used to calibrate the 13C frequency from the thermal proton signal in the target region. This excitation scheme isolates the small [1-13C]pyruvate peak from the similar-magnitude tail of the much larger injected [1-13C]lactate peak, facilitates quantification of the [1-13C]pyruvate signal, simplifies data processing, and could be employed for other substrates and preclinical models.

SELECTION OF CITATIONS
SEARCH DETAIL
...