Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 26(26): 265701, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26057323

ABSTRACT

Scanning thermal microscopy has been implemented in a cross-sectional geometry, and its application for quantitative, nanoscale analysis of thermal conductivity is demonstrated in studies of an ErAs/GaAs nanocomposite superlattice. Spurious measurement effects, attributable to local thermal transport through air, were observed near large step edges, but could be eliminated by thermocompression bonding to an additional structure. Using this approach, bonding of an ErAs/GaAs superlattice grown on GaAs to a silicon-on-insulator wafer enabled thermal signals to be obtained simultaneously from Si, SiO2, GaAs, and ErAs/GaAs superlattice. When combined with numerical modeling, the thermal conductivity of the ErAs/GaAs superlattice measured using this approach was 11 ± 4 W m(-1) K(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...