Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 11897, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488205

ABSTRACT

Ion channels are vital components of filamentous fungi signaling in communication with their environment. We exploited the ability of the apical region of growing sporangiophores of Phycomyces blakesleeanus to form membrane-enveloped cytoplasmic droplets (CDs), to examine ion currents in the filamentous fungi native plasma membrane. In hypoosmotic conditions, the dominant current in the CDs is ORIC, an osmotically activated, anionic, outwardly rectified, fast inactivating instantaneous current that we have previously characterized. Here, we examined the effect of ATP on ORIC. We show that CDs contain active mitochondria, and that respiration inhibition by azide accelerates ORIC inactivation. ATP, added intracellularly, reduced ORIC run-down and shifted the voltage dependence of inactivation toward depolarized potentials, in a manner that did not require hydrolysis. Notably, ATP led to slowing down of ORIC inactivation, as evidenced by an increased time constant of inactivation, τin, and slower decline of τin during prolonged recordings. Flavonoids (genistein and quercetin) had the effect on ORIC opposite to ATP, acting as current inhibitors, possibly by disrupting the stabilizing effect of ATP on ORIC. The integration of osmotic sensing with ATP dependence of the anionic current, typical of vertebrate cells, is described here for the first time in filamentous fungi.


Subject(s)
Fungi , Ion Channels , Cell Membrane/metabolism , Ion Channels/metabolism , Membranes , Adenosine Triphosphate/metabolism
2.
J Fungi (Basel) ; 9(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37367573

ABSTRACT

Studies of ion currents in filamentous fungi are a prerequisite for forming a complete understanding of their physiology. Cytoplasmic droplets (CDs), obtained from sporangiophores of Phycomyces blakesleeanus, are a model system that enables the characterization of ion currents in the native membrane, including the currents mediated by the channels not yet molecularly identified. Osmotically activated anionic current with outward rectification (ORIC) is a dominant current in the membrane of cytoplasmic droplets under the conditions of hypoosmotic stimulation. We have previously reported remarkable functional similarities of ORIC with the vertebrate volume regulated anionic current (VRAC), such as dose-dependent activation by osmotic difference, ion selectivity sequence, and time and voltage dependent profile of the current. Using the patch clamp method on the CD membrane, we further resolve VRAC-like ORIC characteristics in this paper. We examine the inhibition by extracellular ATP and carbenoxolone, the permeation of glutamate in presence of chloride, selectivity for nitrates, and activation by GTP, and we show its single channel behavior in excised membrane. We propose that ORIC is a functional counterpart of vertebrate VRAC in filamentous fungi, possibly with a similar essential role in anion efflux during cell volume regulation.

3.
Microbiology (Reading) ; 163(3): 364-372, 2017 03.
Article in English | MEDLINE | ID: mdl-28100310

ABSTRACT

Increasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic acid (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 and 500 µM NFA for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleeanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33±5 and 21±3 % of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.


Subject(s)
Anthracenes/pharmacology , Antifungal Agents/pharmacology , Cell Respiration/drug effects , Energy Metabolism/drug effects , Niflumic Acid/pharmacology , Phycomyces/growth & development , Adenosine Triphosphate/metabolism , Candida albicans/drug effects , Candida albicans/growth & development , Cell Line, Tumor , Cucumis sativus/drug effects , Humans , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Mitochondria/drug effects , Mitochondria/metabolism , Mycelium/drug effects , Mycelium/growth & development , Mycelium/metabolism , Patch-Clamp Techniques , Phycomyces/drug effects , Phycomyces/metabolism , Polyphosphates/metabolism , Voltage-Dependent Anion Channels/antagonists & inhibitors
4.
Anal Bioanal Chem ; 407(24): 7487-96, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26253227

ABSTRACT

Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V(5+) and V(4+)) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V(5+), octahedral V(4+), and proposed intracellular complexes of V(5+) were detected simultaneously after addition of a physiologically relevant concentration of V(5+) to the mycelium. A substantial fraction of the externally added V(4+) remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by (51)V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium.


Subject(s)
Phycomyces/physiology , Vanadium/chemistry , X-Ray Absorption Spectroscopy/methods , Spectrum Analysis, Raman
5.
Res Microbiol ; 166(3): 162-73, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25701762

ABSTRACT

We describe here whole-cell currents of droplets prepared from the apical region of growing Phycomyces blakesleeanus sporangiophores. Whole-cell current recordings revealed the osmotically activated, outwardly rectifying, fast inactivating instantaneous current (ORIC) with biophysical properties closely resembling volume-regulated anionic current (VRAC). ORIC is activated under conditions of osmotically induced swelling and shows strong selectivity for anions over cations. In addition, ORIC shows voltage and time-dependent inactivation at positive potentials and recovery from inactivation at negative potentials. ORIC is blocked by anthracene-9-carboxylic acid, an anion channel blocker, in a voltage-dependent manner. This is the first report of the presence of VRAC-like current in an organism outside the chordate lineage.


Subject(s)
Cell Membrane/physiology , Ion Channels/physiology , Membrane Potentials , Osmotic Pressure , Phycomyces/physiology , Anthracenes/pharmacology , Ion Channel Gating , Patch-Clamp Techniques
6.
PLoS One ; 9(7): e102849, 2014.
Article in English | MEDLINE | ID: mdl-25036378

ABSTRACT

The biological and chemical basis of vanadium action in fungi is relatively poorly understood. In the present study, we investigate the influence of vanadate (V5+) on phosphate metabolism of Phycomyces blakesleeanus. Addition of V5+ caused increase of sugar phosphates signal intensities in 31P NMR spectra in vivo. HPLC analysis of mycelial phosphate extracts demonstrated increased concentrations of glucose 6 phosphate, fructose 6 phosphate, fructose 1, 6 phosphate and glucose 1 phosphate after V5+ treatment. Influence of V5+ on the levels of fructose 2, 6 phosphate, glucosamine 6 phosphate and glucose 1, 6 phosphate (HPLC), and polyphosphates, UDPG and ATP (31P NMR) was also established. Increase of sugar phosphates content was not observed after addition of vanadyl (V4+), indicating that only vanadate influences its metabolism. Obtained results from in vivo experiments indicate catalytic/inhibitory vanadate action on enzymes involved in reactions of glycolysis and glycogenesis i.e., phosphoglucomutase, phosphofructokinase and glycogen phosphorylase in filamentous fungi.


Subject(s)
Fungi/metabolism , Phycomyces/metabolism , Sugar Phosphates/metabolism , Vanadates/metabolism , Adenosine Triphosphate/metabolism , Carbohydrate Metabolism/physiology , Catalysis , Glycolysis/physiology , Kinetics , Magnetic Resonance Spectroscopy/methods , Polyphosphates/metabolism , Uridine Diphosphate Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...