Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 21(1): 211, 2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35780113

ABSTRACT

BACKGROUND: Nchelenge District in northern Zambia suffers from holoendemic malaria transmission despite a decade of yearly indoor residual spraying (IRS) and insecticide-treated net (ITN) distributions. One hypothesis for this lack of impact is that some vectors in the area may forage in the early evening or outdoors. Anopheles gibbinsi specimens were identified in early evening mosquito collections performed in this study area, and further insight was gleaned into this taxon, including characterizing its genetic identity, feeding preferences, and potential role as a malaria vector. METHODS: Mosquitoes were collected in July and August 2019 by CDC light traps in Nchelenge District in indoor sitting rooms, outdoor gathering spaces, and animal pens from 16:00-22:00. Host detection by PCR, COI and ITS2 PCR, and circumsporozoite (CSP) ELISA were performed on all samples morphologically identified as An. gibbinsi, and a subset of specimens were selected for COI and ITS2 sequencing. To determine risk factors for increased abundance of An. gibbinsi, a negative binomial generalized linear mixed-effects model was performed with household-level variables of interest. RESULTS: Comparison of COI and ITS2 An. gibbinsi reference sequences to the NCBI database revealed > 99% identity to "Anopheles sp. 6" from Kenya. More than 97% of specimens were morphologically and molecularly consistent with An. gibbinsi. Specimens were primarily collected in animal pen traps (59.2%), followed by traps outdoors near where humans gather (24.3%), and traps set indoors (16.5%). Host DNA detection revealed a high propensity for goats, but 5% of specimens with detected host DNA had fed on humans. No specimens were positive for Plasmodium falciparum sporozoites. Animal pens and inland households > 3 km from Lake Mweru were both associated with increased An. gibbinsi abundance. CONCLUSIONS: This is the first report of An. gibbinsi in Nchelenge District, Zambia. This study provided a species identity for unknown "An. sp. 6" in the NCBI database, which has been implicated in malaria transmission in Kenya. Composite data suggest that this species is largely zoophilic and exophilic, but comes into contact with humans and the malaria parasites they carry. This species should continue to be monitored in Zambia and neighbouring countries as a potential malaria vector.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/parasitology , DNA , Malaria/epidemiology , Mosquito Vectors/parasitology , Zambia/epidemiology
2.
J Med Entomol ; 59(2): 752-757, 2022 03 16.
Article in English | MEDLINE | ID: mdl-34971369

ABSTRACT

Lyme disease, caused by Borrelia burgdorferi sensu stricto and most commonly transmitted by Ixodes scapularis Say (Ixodida: Ixodidae), is the most common tick-borne disease in Maryland. Because B. burgdorferi s.s. is maintained in enzootic cycles among wild mice (Peromyscus spp) and Ixodes spp ticks, differing patterns of parasitism of ticks on mice could impact the infection prevalence with B. burgdorferi. We determined the infection prevalence of Peromyscus spp as well as questing and partially engorged nymphal ticks collected at six sites on private land in five counties in Maryland from May to August 2020. Questing nymph infection prevalence (NIP) was 14%. We trapped 1258 mice and collected 554 ticks and 413 ear tissue samples. The prevalence of infested Peromyscus spp varied based on host age and sex, with older and male mice more likely to be infested. We detected a significant difference amongst the proportion of attached Ixodes and the location of trapping. Similarly, the prevalence of B. burgdorferi infected Peromyscus spp mice varied between locations (average mouse infection prevalence was 40%), with the highest prevalence in locations where Ixodes were the most commonly found ticks. The B. burgdorferi infection prevalence in partially engorged I. scapularis nymphs retrieved from Peromyscus spp was ~36% which lends further support to the host infection prevalence. Local differences in distribution of infected vectors and reservoirs are important factors to consider when planning interventions to reduce Lyme disease risk.


Subject(s)
Borrelia burgdorferi , Ixodes , Lyme Disease , Rodent Diseases , Spirochaetaceae , Animals , Lyme Disease/epidemiology , Male , Maryland/epidemiology , Nymph , Peromyscus , Prevalence , Rodent Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...