Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 18329, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26671759

ABSTRACT

Efficient cargo uptake is essential for cell-penetrating peptide (CPP) therapeutics, which deliver widely diverse cargoes by exploiting natural cell processes to penetrate the cell's membranes. Yet most current CPP activity assays are hampered by limitations in assessing uptake, including confounding effects of conjugated fluorophores or ligands, indirect read-outs requiring secondary processing, and difficulty in discriminating internalization from endosomally trapped cargo. Split-complementation Endosomal Escape (SEE) provides the first direct assay visualizing true cytoplasmic-delivery of proteins at biologically relevant concentrations. The SEE assay has minimal background, is amenable to high-throughput processes, and adaptable to different transient and stable cell lines. This split-GFP-based platform can be useful to study transduction mechanisms, cellular imaging, and characterizing novel CPPs as pharmaceutical delivery agents in the treatment of disease.


Subject(s)
Cell-Penetrating Peptides , Drug Delivery Systems/methods , Endosomes/metabolism , Green Fluorescent Proteins , Animals , CHO Cells , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacokinetics , Cell-Penetrating Peptides/pharmacology , Cricetinae , Cricetulus , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/pharmacokinetics , Green Fluorescent Proteins/pharmacology , HEK293 Cells , Humans
2.
Methods Mol Biol ; 259: 323-33, 2004.
Article in English | MEDLINE | ID: mdl-15250502

ABSTRACT

Complex networks of protein-protein interactions are key determinants of cellular function, including those regulated by G-protein-coupled receptors (GPCRs). Formation of either stable or transitory complexes are involved in regulating all aspects of receptor function, from ligand binding through to signal transduction, desensitization, resensitization and downregulation. Today, 50% of all recently launched drugs are targeted against GPCRs. This particular class of proteins is extremely useful as a drug target because the receptors are partly located outside the cell, simplifying bioavailability and delivery of drugs directed against them. However, being located within the cell membrane causes difficulties for the study of GPCR function and bioluminescence resonance energy transfer (BRET), a naturally occurring phenomenon, represents a newly emerging, powerful tool with which to investigate and monitor dynamic interactions involving this receptor class. BRET is a noninvasive, highly sensitive technique, performed as a simple homogeneous assay. involving the proximity-dependent transfer of energy from an energy donor to acceptor resulting in the emission of light. This technology has several advantages over alternative approaches as the detection occurs within live cells, in real time, and is not restricted to a particular cellular compartment. The use of such biophysical techniques as BRET, will not only increase our understanding of the nature of GPCR regulation and the protein complexes involved, but could also potentially lead to the development of novel therapeutics that modulate these interactions.


Subject(s)
Biological Assay/methods , Receptors, G-Protein-Coupled/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Protein Binding , Receptors, G-Protein-Coupled/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Structure-Activity Relationship
3.
J Biol Chem ; 279(36): 37726-33, 2004 Sep 03.
Article in English | MEDLINE | ID: mdl-15187087

ABSTRACT

The alpha(v)beta(3) integrin is known to cooperate with receptor tyrosine kinases to enhance cellular responses. To determine whether alpha(v)beta(3) regulates transforming growth factor beta (TGFbeta) 1-induced responses, we investigated the interaction between alpha(v)beta(3) and TGFbeta type II receptor (TGFbetaIIR) in primary human lung fibroblasts. We report that TGFbeta1 up-regulates cell surface and mRNA expression of alpha(v)beta(3) in a time- and dose-dependent manner. Co-immunoprecipitation and confocal microscopy showed that TGFbetaRII associates and clusters with alpha(v)beta(3), following TGFbeta1 exposure. This association was not observed with alpha(v)beta(5) or alpha(5)beta(1). We also used a novel molecular proximity assay, bioluminescence resonance energy transfer (BRET), to quantify this dynamic interaction in living cells. TGFbeta1 stimulation resulted in a BRET signal within 5 min, whereas tenascin, which binds alpha(v)beta(3), did not induce a substantial BRET signal. Co-exposure to tenascin and TGFbeta1 produced no further increases in BRET than TGFbeta1 alone. Cyclin D1 was rapidly induced in cells co-exposed to TGFbeta1 and tenascin, and as a consequence proliferation induced by TGFbeta1 was dramatically enhanced in cells co-exposed to tenascin or vitronectin. Cholesterol depletion inhibited the interaction between TGFbetaRII and alpha(v)beta(3) and abrogated the proliferative effect. The cyclic RGD peptide, GpenGRGDSPCA, which blocks alpha(v)beta(3), also abolished the synergistic proliferative effect seen. These results indicate a new interaction partner for the alpha(v)beta(3) integrin, the TGFbetaIIR, in which TGFbeta1-induced responses are potentiated in the presence alpha(v)beta(3) ligands. Our data provide a novel mechanism by which TGFbeta1 may contribute to abnormal wound healing and tissue fibrosis.


Subject(s)
Cell Division/physiology , Integrin alphaVbeta3/metabolism , Lung/cytology , Receptors, Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/physiology , Cell Line , Fibroblasts/cytology , Humans , Ligands , Protein Binding , RNA, Messenger/genetics , Transforming Growth Factor beta/genetics
4.
J Leukoc Biol ; 75(5): 792-7, 2004 May.
Article in English | MEDLINE | ID: mdl-14742639

ABSTRACT

Signal transducers and activators of transcription (STATs) are crucial molecules in cytokine signaling. In the conventional model of STAT activation, STAT molecules are recruited from a latent pool of cytoplasmic monomers to the activated cytokine receptor. After binding to the receptor, they get tyrosine-phosphorylated, dissociate from the receptor, and translocate to the nucleus as activation-induced dimers. Recently, several publications questioned this model of STAT activation and showed the existence of preassociated STAT molecules before activation. We were able to demonstrate the existence of these preassociated STAT3 molecules in living mammalian cells using bioluminescence resonance energy transfer. Our results support the new hypothesis that STAT molecules exist in the cytoplasm as dimers or multimers and point to an activation-induced change in STAT3 conformation. Therefore, we propose a new model of STAT activation and discuss a hypothetical structure of "cytoplasmic" STAT dimers as opposed to the known "activation-induced" dimer.


Subject(s)
DNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Animals , COS Cells , Chlorocebus aethiops , DNA-Binding Proteins/genetics , Dimerization , Energy Transfer , Luciferases , Luminescent Measurements , Protein Binding , Recombinant Fusion Proteins , STAT3 Transcription Factor , Trans-Activators/genetics , Transfection
5.
Front Neuroendocrinol ; 24(4): 254-78, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14726257

ABSTRACT

Protein-protein interactions are fundamental processes for many biological systems including those involving the superfamily of G-protein coupled receptors (GPCRs). A growing body of biochemical and functional evidence supports the existence of GPCR-GPCR homo- and hetero-oligomers. In particular, hetero-oligomers can display pharmacological and functional properties distinct from those of the homodimer or oligomer thus adding another level of complexity to how GPCRs are activated, signal and traffick in the cell. Dimerization may also play a role in influencing the activity of agonists and antagonists. We are only beginning to unravel how and why such complexes are formed, the functional implications of which will have an enormous impact on GPCR biology. Future research that studies GPCRs as dimeric or oligomeric complexes will enhance not only our understanding of GPCRs in cellular function but will also be critical for novel drug design and improved treatment of the vast array of GPCR-related conditions.


Subject(s)
Neurosecretory Systems/metabolism , Oligopeptides/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Dimerization
6.
Trends Endocrinol Metab ; 13(10): 415-21, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12431837

ABSTRACT

Many aspects of hormone receptor function that are crucial for controlling signal transduction of endocrine pathways can be monitored more accurately with the use of non-invasive, live cell resonance energy transfer (RET) techniques. Fluorescent RET (FRET), and its variation, bioluminescent RET (BRET), can be used to assess the real-time responses to specific hormonal stimuli, whilst preserving the cellular protein network, compartmentalization and spatial arrangement. Both FRET and BRET can be readily adapted to the study of membrane proteins. Here, we focus on their applications to the analysis of interactions involving the superfamily of hormone G-protein-coupled receptors. RET is also emerging as a significant tool for the determination of protein function in general. Such techniques will undoubtedly be of value in determining the functional identities of the vast array of proteins that are encoded by the human genome.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Ligands , Luminescent Measurements , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Binding , Receptors, Cell Surface/metabolism , Energy Transfer , Fluorescence Resonance Energy Transfer/trends , Forecasting , Hormone Antagonists/metabolism , Hormones/metabolism , Luminescent Proteins/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...