Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679479

ABSTRACT

Normative ferret brain development was characterized using magnetic resonance imaging. Brain growth was longitudinally monitored in 10 ferrets (equal numbers of males and females) from postnatal day 8 (P8) through P38 in 6-d increments. Template T2-weighted images were constructed at each age, and these were manually segmented into 12 to 14 brain regions. A logistic growth model was used to fit data from whole brain volumes and 8 of the individual regions in both males and females. More protracted growth was found in males, which results in larger brains; however, sex differences were not apparent when results were corrected for body weight. Additionally, surface models of the developing cortical plate were registered to one another using the anatomically-constrained Multimodal Surface Matching algorithm. This, in turn, enabled local logistic growth parameters to be mapped across the cortical surface. A close similarity was observed between surface area expansion timing and previous reports of the transverse neurogenic gradient in ferrets. Regional variation in the extent of surface area expansion and the maximum expansion rate was also revealed. This characterization of normative brain growth over the period of cerebral cortex folding may serve as a reference for ferret studies of brain development.


Subject(s)
Brain , Ferrets , Magnetic Resonance Imaging , Animals , Ferrets/growth & development , Magnetic Resonance Imaging/methods , Male , Female , Brain/growth & development , Brain/diagnostic imaging , Brain/anatomy & histology , Longitudinal Studies , Sex Characteristics
2.
Sci Rep ; 14(1): 5808, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461359

ABSTRACT

Prenatal cannabis use is associated with adverse offspring neurodevelopmental outcomes, however the underlying mechanisms are relatively unknown. We sought to determine the impact of chronic delta-9-tetrahydrocannabinol (THC) exposure on fetal neurodevelopment in a rhesus macaque model using advanced imaging combined with molecular and tissue studies. Animals were divided into two groups, control (n = 5) and THC-exposed (n = 5), which received a daily THC edible pre-conception and throughout pregnancy. Fetal T2-weighted MRI was performed at gestational days 85 (G85), G110, G135 and G155 to assess volumetric brain development. At G155, animals underwent cesarean delivery with collection of fetal cerebrospinal fluid (CSF) for microRNA (miRNA) studies and fetal tissue for histologic analysis. THC exposure was associated with significant age by sex interactions in brain growth, and differences in fetal brain histology suggestive of brain dysregulation. Two extracellular vesicle associated-miRNAs were identified in THC-exposed fetal CSF; pathway analysis suggests that these miRNAs are associated with dysregulated axonal guidance and netrin signaling. This data is indicative of subtle molecular changes consistent with the observed histological data, suggesting a potential role for fetal miRNA regulation by THC. Further studies are needed to determine whether these adverse findings correlate with long-term offspring neurodevelopmental health.


Subject(s)
Cannabis , MicroRNAs , Pregnancy , Animals , Female , Macaca mulatta , Dronabinol/adverse effects , Fetus , Cannabis/adverse effects , MicroRNAs/genetics
3.
Sci Rep ; 13(1): 20583, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996465

ABSTRACT

Cortical folding is an important process during brain development, and aberrant folding is linked to disorders such as autism and schizophrenia. Changes in cell numbers, size, and morphology have been proposed to exert forces that control the folding process, but these changes may also influence the mechanical properties of developing brain tissue. Currently, the changes in tissue stiffness during brain folding are unknown. Here, we report stiffness in the developing ferret brain across multiple length scales, emphasizing changes in folding cortical tissue. Using rheometry to measure the bulk properties of brain tissue, we found that overall brain stiffness increases with age over the period of cortical folding. Using atomic force microscopy to target the cortical plate, we found that the occipital cortex increases in stiffness as well as stiffness heterogeneity over the course of development and folding. These findings can help to elucidate the mechanics of the cortical folding process by clarifying the concurrent evolution of tissue properties.


Subject(s)
Cerebral Cortex , Ferrets , Animals , Brain , Occipital Lobe , Microscopy, Atomic Force
4.
Br J Anaesth ; 131(6): 1030-1042, 2023 12.
Article in English | MEDLINE | ID: mdl-37714750

ABSTRACT

BACKGROUND: Clinical studies suggest that anaesthesia exposure early in life affects neurobehavioural development. We designed a non-human primate (NHP) study to evaluate cognitive, behavioural, and brain functional and structural alterations after isoflurane exposure during infancy. These NHPs displayed decreased close social behaviour and increased astrogliosis in specific brain regions, most notably in the amygdala. Here we hypothesise that resting-state functional connectivity MRI can detect alterations in connectivity of brain areas that relate to these social behaviours and astrogliosis. METHODS: Imaging was performed in 2-yr-old NHPs under light anaesthesia, after early-in-life (postnatal days 6-12) exposure to 5 h of isoflurane either one or three times, or to room air. Brain images were segmented into 82 regions of interest; the amygdala and the posterior cingulate cortex were chosen for a seed-based resting-state functional connectivity MRI analysis. RESULTS: We found differences between groups in resting-state functional connectivity of the amygdala and the auditory cortices, medial premotor cortex, and posterior cingulate cortex. There were also alterations in resting-state functional connectivity between the posterior cingulate cortex and secondary auditory, polar prefrontal, and temporal cortices, and the anterior insula. Relationships were identified between resting-state functional connectivity alterations and the decrease in close social behaviour and increased astrogliosis. CONCLUSIONS: Early-in-life anaesthesia exposure in NHPs is associated with resting-state functional connectivity alterations of the amygdala and the posterior cingulate cortex with other brain regions, evident at the juvenile age of 2 yr. These changes in resting-state functional connectivity correlate with the decrease in close social behaviour and increased astrogliosis. Using resting-state functional connectivity MRI to study the neuronal underpinnings of early-in-life anaesthesia-induced behavioural alterations could facilitate development of a biomarker for anaesthesia-induced developmental neurotoxicity.


Subject(s)
Isoflurane , Animals , Isoflurane/adverse effects , Gliosis , Brain/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Magnetic Resonance Imaging/methods , Primates , Brain Mapping/methods , Neural Pathways/diagnostic imaging , Neural Pathways/physiology
5.
Curr Res Neurobiol ; 4: 100090, 2023.
Article in English | MEDLINE | ID: mdl-37397804

ABSTRACT

We recently generated a nonhuman primate (NHP) model of the neurodegenerative disorder Huntington's disease (HD) using adeno-associated viral vectors to express a fragment of mutant HTT protein (mHTT) throughout the cortico-basal ganglia circuit. Previous work by our group established that mHTT-treated NHPs exhibit progressive motor and cognitive phenotypes which are accompanied by mild volumetric reductions of cortical-basal ganglia structures and reduced fractional anisotropy (FA) in the white matter fiber pathways interconnecting these regions, mirroring findings observed in early-stage HD patients. Given the mild structural atrophy observed in cortical and sub-cortical gray matter regions characterized in this model using tensor-based morphometry, the current study sought to query potential microstructural alterations in the same gray matter regions using diffusion tensor imaging (DTI), to define early biomarkers of neurodegenerative processes in this model. Here, we report that mHTT-treated NHPs exhibit significant microstructural changes in several cortical and subcortical brain regions that comprise the cortico-basal ganglia circuit; with increased FA in the putamen and globus pallidus and decreased FA in the caudate nucleus and several cortical regions. DTI measures also correlated with motor and cognitive deficits such that animals with increased basal ganglia FA, and decreased cortical FA, had more severe motor and cognitive impairment. These data highlight the functional implications of microstructural changes in the cortico-basal ganglia circuit in early-stage HD.

6.
Neurobiol Aging ; 126: 34-43, 2023 06.
Article in English | MEDLINE | ID: mdl-36917864

ABSTRACT

The rhesus macaque is a long-lived nonhuman primate (NHP) with a brain structure similar to humans, which may represent a valuable translational animal model in which to study human brain aging. Previous magnetic resonance imaging (MRI) studies of age in rhesus macaque brains have been prone to low statistical power, unbalanced sex ratio and lack of a complete age range. To overcome these problems, the current study surveyed structural T1-weighted magnetic resonance imaging scans of 66 animals, 34 females (aged 6-31 years) and 32 males (aged 5-27 years). Differences observed in older animals, included enlargement of the lateral ventricles and a smaller volume in the frontal cortex, caudate, putamen, hypothalamus, and thalamus. Unexpected, greater volume, were measured in older animals in the hippocampus, amygdala, and globus pallidus. There were also numerous differences between males and females with respect to age in both white and gray matter regions. As an apparent model of normative human aging, the macaque is ideal for studying induction and mitigation of neurodegenerative disease.


Subject(s)
Longevity , Neurodegenerative Diseases , Male , Animals , Female , Humans , Aged , Macaca mulatta , Neurodegenerative Diseases/pathology , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging/methods
7.
Biol Psychiatry ; 94(5): 393-404, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36736419

ABSTRACT

BACKGROUND: High-level alcohol consumption causes neuroplastic changes in the brain that promote pathological drinking behavior. Some of these changes have been characterized in defined brain circuits and cell types, but unbiased approaches are needed to explore broader patterns of adaptations. METHODS: We used whole-brain c-Fos mapping and network analysis to assess patterns of neuronal activity during alcohol withdrawal and following reaccess in a well-characterized model of alcohol dependence. Mice underwent 4 cycles of chronic intermittent ethanol to increase voluntary alcohol consumption, and a subset underwent forced swim stress to further escalate consumption. Brains were collected either 24 hours (withdrawal) or immediately following a 1-hour period of alcohol reaccess. c-fos counts were obtained for 110 brain regions using iDISCO and ClearMap. Then, we classified mice as high or low drinkers and used graph theory to identify changes in network properties associated with high-drinking behavior. RESULTS: During withdrawal, chronic intermittent ethanol mice displayed widespread increased c-Fos expression relative to air-exposed mice, independent of forced swim stress. Reaccess drinking reversed this increase. Network modularity, a measure of segregation into communities, was increased in high-drinking mice after alcohol reaccess relative to withdrawal. The cortical amygdala showed increased cross-community coactivation during withdrawal in high-drinking mice, and cortical amygdala silencing in chronic intermittent ethanol mice reduced voluntary drinking. CONCLUSIONS: Alcohol withdrawal in dependent mice causes changes in brain network organization that are attenuated by reaccess drinking. Olfactory brain regions, including the cortical amygdala, drive some of these changes and may play an important but underappreciated role in alcohol dependence.


Subject(s)
Alcoholism , Substance Withdrawal Syndrome , Animals , Mice , Alcohol Drinking , Alcoholism/metabolism , Brain/metabolism , Ethanol , Mice, Inbred C57BL , Substance Withdrawal Syndrome/metabolism , Proto-Oncogene Proteins c-fos/metabolism
8.
Sci Rep ; 13(1): 841, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36646824

ABSTRACT

Maternal malnutrition increases fetal and neonatal morbidity, partly by affecting placental function and morphology, but its impact on placental hemodynamics are unknown. Our objective was to define the impact of maternal malnutrition on placental oxygen reserve and perfusion in vivo in a rhesus macaque model of protein restriction (PR) using advanced imaging. Animals were fed control (CON, 26% protein), 33% PR diet (17% protein), or a 50% PR diet (13% protein, n = 8/group) preconception and throughout pregnancy. Animals underwent Doppler ultrasound and fetal biometry followed by MRI at gestational days 85 (G85) and 135 (G135; term is G168). Pregnancy loss rates were 0/8 in CON, 1/8 in 33% PR, and 3/8 in 50% PR animals. Fetuses of animals fed a 50% PR diet had a smaller abdominal circumference (G135, p < 0.01). On MRI, placental blood flow was decreased at G135 (p < 0.05) and placental oxygen reserve was reduced (G85, p = 0.05; G135, p = 0.01) in animals fed a 50% PR diet vs. CON. These data demonstrate that a 50% PR diet reduces maternal placental perfusion, decreases fetal oxygen availability, and increases fetal mortality. These alterations in placental hemodynamics may partly explain human growth restriction and stillbirth seen with severe PR diets in the developing world.


Subject(s)
Diet, Protein-Restricted , Malnutrition , Animals , Female , Pregnancy , Diet, Protein-Restricted/adverse effects , Fetal Growth Retardation/metabolism , Hemodynamics , Macaca mulatta/metabolism , Maternal-Fetal Exchange , Oxygen/metabolism , Placenta/metabolism
9.
Elife ; 112022 10 07.
Article in English | MEDLINE | ID: mdl-36205397

ABSTRACT

We created a new nonhuman primate model of the genetic neurodegenerative disorder Huntington's disease (HD) by injecting a mixture of recombinant adeno-associated viral vectors, serotypes AAV2 and AAV2.retro, each expressing a fragment of human mutant HTT (mHTT) into the caudate and putamen of adult rhesus macaques. This modeling strategy results in expression of mutant huntingtin protein (mHTT) and aggregate formation in the injected brain regions, as well as dozens of other cortical and subcortical brain regions affected in human HD patients. We queried the disruption of cortico-basal ganglia circuitry for 30 months post-surgery using a variety of behavioral and imaging readouts. Compared to controls, mHTT-treated macaques developed working memory decline and progressive motor impairment. Multimodal imaging revealed circuit-wide white and gray matter degenerative processes in several key brain regions affected in HD. Taken together, we have developed a novel macaque model of HD that may be used to develop disease biomarkers and screen promising therapeutics.


Subject(s)
Cognitive Dysfunction , Huntington Disease , Neurodegenerative Diseases , Adult , Animals , Biomarkers , Disease Models, Animal , Humans , Huntingtin Protein/genetics , Huntington Disease/pathology , Macaca mulatta
10.
PLoS One ; 17(7): e0270360, 2022.
Article in English | MEDLINE | ID: mdl-35853003

ABSTRACT

Existing methods for evaluating in vivo placental function fail to reliably detect pregnancies at-risk for adverse outcomes prior to maternal and/or fetal morbidity. Here we report the results of a prospective dual-site longitudinal clinical study of quantitative placental T2* as measured by blood oxygen-level dependent magnetic resonance imaging (BOLD-MRI). The objectives of this study were: 1) to quantify placental T2* at multiple time points across gestation, and its consistency across sites, and 2) to investigate the association between placental T2* and adverse outcomes. 797 successful imaging studies, at up to three time points between 11 and 38 weeks of gestation, were completed in 316 pregnancies. Outcomes were stratified into three groups: (UN) uncomplicated/normal pregnancy, (PA) primary adverse pregnancy, which included hypertensive disorders of pregnancy, birthweight <5th percentile, and/or stillbirth or fetal death, and (SA) secondary abnormal pregnancy, which included abnormal prenatal conditions not included in the PA group such as spontaneous preterm birth or fetal anomalies. Of the 316 pregnancies, 198 (62.6%) were UN, 70 (22.2%) PA, and 48 (15.2%) SA outcomes. We found that the evolution of placental T2* across gestation was well described by a sigmoid model, with T2* decreasing continuously from a high plateau level early in gestation, through an inflection point around 30 weeks, and finally approaching a second, lower plateau in late gestation. Model regression revealed significantly lower T2* in the PA group than in UN pregnancies starting at 15 weeks and continuing through 33 weeks. T2* percentiles were computed for individual scans relative to UN group regression, and z-scores and receiver operating characteristic (ROC) curves calculated for association of T2* with pregnancy outcome. Overall, differences between UN and PA groups were statistically significant across gestation, with large effect sizes in mid- and late- pregnancy. The area under the curve (AUC) for placental T2* percentile and PA pregnancy outcome was 0.71, with the strongest predictive power (AUC of 0.76) at the mid-gestation time period (20-30 weeks). Our data demonstrate that placental T2* measurements are strongly associated with pregnancy outcomes often attributed to placental insufficiency. Trial registration: ClinicalTrials.gov: NCT02749851.


Subject(s)
Pregnancy Outcome , Premature Birth , Female , Humans , Infant, Newborn , Placenta/diagnostic imaging , Pregnancy , Pregnancy Trimester, Third , Premature Birth/diagnostic imaging , Prospective Studies
11.
Geroscience ; 44(4): 1-14, 2022 08.
Article in English | MEDLINE | ID: mdl-35612774

ABSTRACT

Patients with Alzheimer's disease (AD) often have cerebral white matter (WM) hyperintensities on MRI and microinfarcts of presumed microvascular origin pathologically. Here, we determined if vasodilator dysfunction of WM-penetrating arterioles is associated with pathologically defined WM injury and disturbances in quantitative MRI-defined WM integrity in patients with mixed microvascular and AD pathology. We analyzed tissues from 28 serially collected human brains from research donors diagnosed with varying degrees of AD neuropathologic change (ADNC) with or without cerebral microinfarcts (mVBI). WM-penetrating and pial surface arteriolar responses to the endothelium-dependent agonist bradykinin were quantified ex vivo with videomicroscopy. Vascular endothelial nitric oxide synthase (eNOS) and NAD(P)H-oxidase (Nox1, 2 and 4 isoforms) expression were measured with quantitative PCR. Glial fibrillary acidic protein (GFAP)-labeled astrocytes were quantified by unbiased stereological approaches in regions adjacent to the sites of WM-penetrating vessel collection. Post-mortem diffusion tensor imaging (DTI) was used to measure mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA), quantitative indices of WM integrity. In contrast to pial surface arterioles, white matter-penetrating arterioles from donors diagnosed with high ADNC and mVBI exhibited a significantly reduced dilation in response to bradykinin when compared to the other groups. Expression of eNOS was reduced, whereas Nox1 expression was increased in WM arterioles in AD and mVBI cases. WM astrocyte density was increased in AD and mVBI, which correlated with a reduced vasodilation in WM arterioles. Moreover, in cases with low ADNC, bradykinin-induced WM arteriole dilation correlated with lower ADC and higher FA values. Comorbid ADNC and mVBI appear to synergistically interact to selectively impair bradykinin-induced vasodilation in WM-penetrating arterioles, which may be related to reduced nitric oxide- and excess reactive oxygen species-mediated vascular endothelial dysfunction. WM arteriole vasodilator dysfunction is associated with WM injury, as supported by reactive astrogliosis and MRI-defined disrupted WM microstructural integrity.


Subject(s)
Alzheimer Disease , White Matter , Humans , Alzheimer Disease/complications , Diffusion Tensor Imaging/methods , Bradykinin , Vasodilator Agents
12.
J Neurosci ; 42(24): 4867-4878, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35552233

ABSTRACT

The predisposition to engage in autonomous habitual behaviors has been associated with behavioral disorders, such as obsessive-compulsive disorder and addiction. Attentional set-shifting tasks (ASSTs), which incorporate changes governing the association of discriminative stimuli with contingent reinforcement, are commonly used to measure underlying processes of cognitive/behavioral flexibility. The purpose of this study was to identify primate brain networks that mediate trait-like deficits in ASST performance using resting-state fMRI. A self-pacing ASST was administered to three cohorts of rhesus monkeys (total n = 35, 18 female). Increased performance over 30 consecutive sessions segregated the monkeys into two populations, termed High Performers (HP, n = 17) and Low Performers (LP, n = 17), with one anomaly. Compared with LPs, HPs had higher rates of improving performance over sessions and completed the 8 sets/sessions with fewer errors. LP monkeys, on the other hand, spent most of each session in the first set and often did not acquire the first reversal. A whole-brain independent components analysis of resting-state fMRI under isoflurane identified four strong networks. Of these, a dual regression analysis revealed that a designated "executive control network," differed between HPs and LPs. Specific areas of connectivity in the rhesus executive control network, including frontal cortices (ventrolateral, ventromedial, and orbital) and the dorsal striatum (caudate, putamen) correlated with perseverative errors and response latency. Overall, the results identify trait-like characteristics of behavioral flexibility that are associated with correlated brain activity involving specific nuclei of frontostriatal networks.SIGNIFICANCE STATEMENT Resting state functional connectivity MRI in rhesus monkeys identified specific nuclei in frontostriatal circuitry that were associated with population differences in perseverative and impulsive aspects of cognitive flexibility.


Subject(s)
Brain Mapping , Lipopolysaccharides , Animals , Brain/diagnostic imaging , Brain Mapping/methods , Female , Macaca mulatta , Magnetic Resonance Imaging/methods , Male , Neural Pathways
13.
J Perinatol ; 42(7): 866-872, 2022 07.
Article in English | MEDLINE | ID: mdl-34686834

ABSTRACT

OBJECTIVE: To demonstrate sensitivity of diffusion-weighted MRI (DW-MRI) to pulmonary cellular-space changes during normal in utero development using fetal rhesus macaques, compared to histological biomarkers. STUDY DESIGN: In vivo/ex vivo DW-MRI was acquired in 26 fetal rhesus lungs (early-canalicular through saccular stages). Apparent diffusion coefficients (ADC) from MRI and tissue area density (H&E), alveolar type-II cells (ABCA3), and epithelial cells (TTF1) from histology were compared between gestational stages. RESULTS: In vivo/ex vivo ADC correlated with each other (Spearman ρ = 0.47, P = 0.038; Bland-Altman bias = 0.0835) and with area-density (in vivo ρ = -0.56, P = 0.011; ex vivo ρ = -0.83, P < 0.0001). In vivo/ex vivo ADC increased exponentially toward saturation with gestational stage (R2 = 0.49/0.49), while area-density decreased exponentially (R2 = 0.53). ABCA3 and TTF1 stains demonstrated expected fetal cellular development. CONCLUSIONS: Fetal DW-MRI provides a non-invasive biomarker for pulmonary structural maturation, with a strong correlation to histological markers during tissue development in rhesus macaques. This method has strong potential for assessing human fetal development, particularly in patients with pulmonary hypoplasia.


Subject(s)
Diffusion Magnetic Resonance Imaging , Fetal Development , Animals , Biomarkers , Diffusion Magnetic Resonance Imaging/methods , Humans , Lung/diagnostic imaging , Macaca mulatta
14.
Am J Obstet Gynecol ; 226(1): 130.e1-130.e11, 2022 01.
Article in English | MEDLINE | ID: mdl-34364844

ABSTRACT

BACKGROUND: Prenatal alcohol exposure is the most common cause of birth defects and intellectual disabilities and can increase the risk of stillbirth and negatively impact fetal growth. OBJECTIVE: To determine the effect of early prenatal alcohol exposure on nonhuman primate placental function and fetal growth. We hypothesized that early chronic prenatal alcohol would alter placental perfusion and oxygen availability that adversely affects fetal growth. STUDY DESIGN: Rhesus macaques self-administered 1.5 g/kg/d of ethanol (n=12) or isocaloric maltose-dextrin (n=12) daily before conception through the first 60 days of gestation (term is approximately 168 days). All animals were serially imaged with Doppler ultrasound to measure fetal biometry, uterine artery volume blood flow, and placental volume blood flow. Following Doppler ultrasound, all animals underwent both blood oxygenation level-dependent magnetic resonance imaging to characterize placental blood oxygenation and dynamic contrast-enhanced magnetic resonance imaging to quantify maternal placental perfusion. Animals were delivered by cesarean delivery for placental collection and fetal necropsy at gestational days 85 (n=8), 110 (n=8), or 135 (n=8). Histologic and RNA-sequencing analyses were performed on collected placental tissue. RESULTS: Placental volume blood flow was decreased at all gestational time points in ethanol-exposed vs control animals, but most significantly at gestational day 110 by Doppler ultrasound (P<.05). A significant decrease in total volumetric blood flow occurred in ethanol-exposed vs control animals on dynamic contrast-enhanced magnetic resonance imaging at both gestation days 110 and 135 (P<.05); moreover, a global reduction in T2∗, high blood deoxyhemoglobin concentration, occurred throughout gestation (P<.05). Similarly, evidence of placental ischemic injury was notable by histologic analysis, which revealed a significant increase in microscopic infarctions in ethanol-exposed, not control, animals, largely present at middle to late gestation. Fetal biometry and weight were decreased in ethanol-exposed vs control animals, but the decrease was not significant. Analysis with RNA sequencing suggested the involvement of the inflammatory and extracellular matrix response pathways. CONCLUSION: Early chronic prenatal alcohol exposure significantly diminished placental perfusion at mid to late gestation and also significantly decreased the oxygen supply to the fetal vasculature throughout pregnancy, these findings were associated with the presence of microscopic placental infarctions in the nonhuman primate. Although placental adaptations may compensate for early environmental perturbations to fetal growth, placental blood flow and oxygenation were reduced, consistent with the evidence of placental ischemic injury.


Subject(s)
Ethanol/adverse effects , Macaca mulatta , Prenatal Exposure Delayed Effects/etiology , Animals , Disease Models, Animal , Ethanol/pharmacology , Female , Fetal Development/drug effects , Humans , Placenta/drug effects , Pregnancy
15.
Nat Commun ; 12(1): 6681, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795256

ABSTRACT

The past decade has experienced renewed interest in the physical processes that fold the developing cerebral cortex. Biomechanical models and experiments suggest that growth of the cortex, outpacing growth of underlying subcortical tissue (prospective white matter), is sufficient to induce folding. However, current models do not explain the well-established links between white matter organization and fold morphology, nor do they consider subcortical remodeling that occurs during the period of folding. Here we propose a framework by which cortical folding may induce subcortical fiber growth and organization. Simulations incorporating stress-induced fiber elongation indicate that subcortical stresses resulting from folding are sufficient to induce stereotyped fiber organization beneath gyri and sulci. Model predictions are supported by high-resolution ex vivo diffusion tensor imaging of the developing rhesus macaque brain. Together, results provide support for the theory of cortical growth-induced folding and indicate that mechanical feedback plays a significant role in brain connectivity.


Subject(s)
Algorithms , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Models, Neurological , Animals , Anisotropy , Biomechanical Phenomena , Brain/embryology , Brain/growth & development , Brain Mapping/methods , Humans , Prospective Studies , Surface Tension
16.
Neuroimage ; 225: 117517, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33137475

ABSTRACT

Macaques are the most common nonhuman primate (NHP) species used in neuroscience research. With the advancement of many neuroimaging techniques, new studies are beginning to apply multiple types of in vivo magnetic resonance imaging (MRI), such as structural imaging (sMRI) with T1 and T2 weighted contrasts alongside diffusion weighed (DW) imaging. In studies involving rhesus macaques, this approach can be used to better understand micro-structural changes that occur during development, in various disease states or with normative aging. However, many of the available rhesus brain atlases have been designed for only one imaging modality, making it difficult to consistently define the same brain regions across multiple imaging modalities in the same subject. To address this, we created a brain atlas from 18 adult rhesus macaques that includes co-registered templates constructed from images frequently used to characterize macroscopic brain structure (T2/SPACE and T1/MP-RAGE), and a diffusion tensor imaging (DTI) template. The DTI template was up-sampled from 1 mm isotropic resolution to resolution match to the T1 and T2-weighted images (0.5 mm isotropic), and the parameter maps were derived for FA, AD, RD and MD.The labelmap volumes delineate 57 gray matter regions of interest (ROIs; 36 cortical regions and 21 subcortical structures), as well as 74 white matter tracts. Importantly, the labelmap overlays both the structural and diffusion templates, enabling the same regions to be consistently identified across imaging modalities. A specialized condensed version of the labelmap ROIs are also included to further extend the usefulness of this tool for imaging data with lower spatial resolution, such as functional MRI (fMRI) or positron emission tomography (PET).


Subject(s)
Atlases as Topic , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , Animals , Brain/anatomy & histology , Brain Mapping , Diffusion Tensor Imaging/methods , Female , Gray Matter/anatomy & histology , Macaca mulatta , Male , Multimodal Imaging , White Matter/anatomy & histology
17.
Front Neurol ; 11: 539, 2020.
Article in English | MEDLINE | ID: mdl-32670182

ABSTRACT

The consumption of a diet high in fat and refined sugars has several health risks, including the development of cognitive decline and neurodegeneration. For women, menopause carries additional health risks that may interact with a high-fat diet in negative ways. Some symptoms of menopause, including cognitive impairments, can be modulated by hormone replacement therapy (HRT), but the hormonal formulation and the timing of the treatment relative to the onset of menopause are critical factors determining its efficacy. Little is known about how obesogenic, high-fat, high-sugar diets interact with HRT in menopause to affect cognition and neurodegeneration. Given the high prevalence of the consumption of an obesogenic Western-style diet, understanding how the effects of HRT are modulated by an obesogenic diet is critical for developing optimized therapeutic strategies for peri- and post-menopausal women. In this study, we investigated by magnetic resonance imaging (MRI) the effects of either immediate or delayed estradiol hormone therapy on cognition and neuroanatomy following ovo-hysterectomy (OvH) of aged, female rhesus macaques on an obesogenic diet. The macaques were followed for 2.5 years after ovo-hysterectomy, with four time points at which anatomical MRIs were acquired. Analysis of hippocampal volumes revealed an interaction between time point and treatment; hippocampal volumes in the delayed estrogen group, but not the immediate estrogen group, increased over time compared to those in untreated controls. Performance on a hippocampal-dependent spatial maze task showed improved performance in estrogen treated animals compared to OvH macaques given placebo. These results indicate that HRT may contribute to beneficial cognitive outcomes after menopause under an obesogenic diet.

18.
Nat Commun ; 11(1): 3038, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546755

ABSTRACT

It is of considerable scientific, medical, and societal interest to understand the developmental origins of differences between male and female brains. Here we report the use of advances in MR imaging and analysis to accurately measure global, lobe and millimetre scale growth trajectory patterns over 18 gestational weeks in normal pregnancies with repeated measures. Statistical modelling of absolute growth trajectories revealed underlying differences in many measures, potentially reflecting overall body size differences. However, models of relative growth accounting for global measures revealed a complex temporal form, with strikingly similar cortical development in males and females at lobe scales. In contrast, local cortical growth patterns and larger scale white matter volume and surface measures differed significantly between male and female. Many proportional differences were maintained during neurogenesis and over 18 weeks of growth. These indicate sex related sculpting of neuroanatomy begins early in development, before cortical folding, potentially influencing postnatal development.


Subject(s)
Brain/diagnostic imaging , Brain/embryology , Magnetic Resonance Imaging/methods , Adult , Female , Gestational Age , Humans , Imaging, Three-Dimensional , Male , Neurogenesis , Pregnancy
19.
Proc Natl Acad Sci U S A ; 117(18): 10035-10044, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32312804

ABSTRACT

One factor that contributes to the high prevalence of fetal alcohol spectrum disorder (FASD) is binge-like consumption of alcohol before pregnancy awareness. It is known that treatments are more effective with early recognition of FASD. Recent advances in retrospective motion correction for the reconstruction of three-dimensional (3D) fetal brain MRI have led to significant improvements in the quality and resolution of anatomical and diffusion MRI of the fetal brain. Here, a rhesus macaque model of FASD, involving oral self-administration of 1.5 g/kg ethanol per day beginning prior to pregnancy and extending through the first 60 d of a 168-d gestational term, was utilized to determine whether fetal MRI could detect alcohol-induced abnormalities in brain development. This approach revealed differences between ethanol-exposed and control fetuses at gestation day 135 (G135), but not G110 or G85. At G135, ethanol-exposed fetuses had reduced brainstem and cerebellum volume and water diffusion anisotropy in several white matter tracts, compared to controls. Ex vivo electrophysiological recordings performed on fetal brain tissue obtained immediately following MRI demonstrated that the structural abnormalities observed at G135 are of functional significance. Specifically, spontaneous excitatory postsynaptic current amplitudes measured from individual neurons in the primary somatosensory cortex and putamen strongly correlated with diffusion anisotropy in the white matter tracts that connect these structures. These findings demonstrate that exposure to ethanol early in gestation perturbs development of brain regions associated with motor control in a manner that is detectable with fetal MRI.


Subject(s)
Alcohol Drinking/physiopathology , Brain/physiopathology , Fetal Alcohol Spectrum Disorders/physiopathology , Prenatal Exposure Delayed Effects/physiopathology , Animals , Brain/diagnostic imaging , Brain/drug effects , Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Ethanol/toxicity , Female , Fetal Alcohol Spectrum Disorders/diagnostic imaging , Fetal Development/drug effects , Fetus/diagnostic imaging , Fetus/drug effects , Humans , Macaca mulatta , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/diagnostic imaging , Retrospective Studies
20.
Magn Reson Imaging ; 68: 167-172, 2020 05.
Article in English | MEDLINE | ID: mdl-32081631

ABSTRACT

Non-human primates (NHPs) are vital models for neuroscience research. These animals have been widely used in behavioral, electrophysiological, molecular, and more recently, multimodal neuroimaging and neuro-engineering studies. Several RF coil arrays have been designed for functional, high-resolution brain magnetic resonance imaging (MRI), but few have been designed to accommodate multimodal devices. In the present study, a 16-channel array coil was constructed for brain imaging of macaques at 3 Tesla (3 T). To construct this coil, a close-fitting helmet-shaped form was designed to host 16 coil loops for whole-brain coverage. This assembly is mountable onto stereotaxic head frame bars, and the coil functions while the monkey is in the sphinx position with a clear line of vision of stimuli presented from outside of the MRI system. In addition, 4 openings were allocated in the coil housing, allowing multimodal devices to directly access visual cortical regions such as V1-V4 and MT. Coil performance was evaluated in an anesthetized macaque by quantifying and comparing signal-to-noise ratios (SNRs), noise correlations, and g-factor maps to a vendor-supplied human pediatric coil frequently used for NHP MRI. The result from in vivo experiments showed that the NHP coil was well-decoupled, had higher SNRs in cortical regions, and improved data acquisition acceleration capability compared with a vendor-supplied human pediatric coil that has been frequently used in macaque MRI studies. Furthermore, whole-brain anatomic imaging, diffusion tensor imaging and functional brain imaging have also been conducted: the details of brain anatomical structure, such as cerebellum and brainstem, can be clearly visualized in T2-SPACE images; b0 SNR calculated from b0 maps was higher than the human pediatric coil in all regions of interest (ROIs); the time-course SNR (tSNR) map calculated for GRE-EPI images demonstrates that the presented coil can be used for high-resolution functional imaging at 3 T.


Subject(s)
Brain/diagnostic imaging , Diffusion Tensor Imaging , Magnetic Resonance Imaging , Neuroimaging , Acceleration , Algorithms , Animals , Anisotropy , Brain Stem/diagnostic imaging , Haplorhini , Head , Imaging, Three-Dimensional , Macaca , Male , Radio Waves , Signal-To-Noise Ratio , Visual Cortex/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...