Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 11(7): 3393-400, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26575773

ABSTRACT

Atom vacancies are intrinsic defects of carbon nanotubes. Using a zigzag nanotube as reference, this paper focuses on the comparison of calculations performed within density functional theory and a number of classical force fields widely used for carbon systems. The results refer to single and double vacancies and, in particular, to the induced structural changes, the formation energies, and the energy barriers relative to elementary processes such as reconstruction, migration, and coalescence. Characterization of these processes is remarkably different in the different approaches. These findings are meant to contribute to the construction of DFT-based classical schemes for carbon nanostructures.

2.
J Chem Theory Comput ; 10(10): 4672-83, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-26588158

ABSTRACT

The study of oxygen chemisorption on single-walled carbon nanotubes generally relies on simple atomistic models and hence hampers the possibility to understand whether nanotube size or adduct concentration have a role in determining the surface-adsorbate interaction. Our large-scale DFT-based simulations show that structural and electronic properties as well as diffusion barriers strongly depend on both nanotube diameter and adsorbate concentration. Our atomistic models cover nanotube of different chirality with diameters from 0.6 to 1.5 nm and oxygen concentration from 0.1 to 1%. In particular, the tendency to cluster increases with concentration and stabilizes ether (ET) groups but affects hopping barriers only to a minor extent. Significant differences with graphene are found, also for 1.5 nm diameter nanotubes. Extension to species isoelectronic to oxygen reveals dissimilarities, and especially for sulfur that tends to form epoxides (EP), to diffuse more easily and to rapidly close the energy gap for increasing concentration. The relative ET-EP stability can be described in terms of the bare-bond curvature, a concentration-dependent chemical descriptor here introduced. Comparison of these DFT calculations-using different exchange-correlation functionals-and our additional investigation with a reactive force-field (ReaxFF) clarifies several similarities but also discrepancies between the predictions of the two schemes.

SELECTION OF CITATIONS
SEARCH DETAIL
...