Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
J Org Chem ; 85(5): 3020-3028, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-31990556

ABSTRACT

Di-isopropylphosphino-substituted pincer-ligated iridium catalysts are found to be significantly more effective for the dehydrogenation of simple tertiary amines to give enamines than the previously reported di-t-butylphosphino-substituted species. It is also found that the di-isopropylphosphino-substituted complexes catalyze dehydrogenation of several ß-functionalized tertiary amines to give the corresponding 1,2-difunctionalized olefins. The di-t-butylphosphino-substituted species are ineffective for such substrates; presumably, the marked difference is attributable to the lesser crowding of the di-isopropylphosphino-substituted catalysts. Experimentally determined kinetic isotope effects in conjunction with DFT-based analysis support a dehydrogenation mechanism involving initial pre-equilibrium oxidative addition of the amine α-C-H bond followed by rate-determining elimination of the ß-C-H bond.

2.
Proc Natl Acad Sci U S A ; 116(9): 3419-3424, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30755529

ABSTRACT

The insertion of CO into metal-alkyl bonds is the key C-C bond-forming step in many of the most important organic reactions catalyzed by transition metal complexes. Polar organic molecules (e.g., tetrahydrofuran) have long been known to promote CO insertion reactions, but the mechanism of their action has been the subject of unresolved speculation for over five decades. Comprehensive computational studies [density functional theory (DFT)] on the prototypical system Mn(CO)5(arylmethyl) reveal that the polar molecules do not promote the actual alkyl migration step. Instead, CO insertion (i.e. alkyl migration) occurs rapidly and reversibly to give an acyl complex with a sigma-bound (agostic) C-H bond that is not easily displaced by typical ligands (e.g. phosphines or CO). The agostic C-H bond is displaced much more readily, however, by the polar promoter molecules, even though such species bind only weakly to the metal center and are themselves then easily displaced; the facile kinetics of this process are attributable to a hydrogen bonding-like interaction between the agostic C-H bond and the polar promoter. The role of the promoter is to thereby catalyze isomerization of the agostic product of CO insertion to give an [Formula: see text]-C,O-bound acyl product that is more easily trapped than the agostic species. This ability of such promoters to displace a strongly sigma-bound C-H bond and to subsequently undergo facile displacement themselves is without reported precedent, and could have implications for catalytic reactions beyond carbonylation.

3.
J Am Chem Soc ; 140(6): 2260-2264, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29338213

ABSTRACT

An iridium complex is found to catalyze the selective dehydrogenative coupling of ethylene to 1,3-butadiene. The key intermediate, and a major resting state, is an iridacyclopentane that undergoes a surprisingly facile ß-H elimination, enabled by a partial dechelation (κ3-κ2) of the supporting 3,5-dimethylphenyl-2,6-bis(oxazolinyl) ligand.

4.
J Am Chem Soc ; 139(26): 8977-8989, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28594178

ABSTRACT

The pincer-iridium fragment (iPrPCP)Ir (RPCP = κ3-2,6-C6H3(CH2PR2)2) has been found to catalyze the dehydrogenative coupling of vinyl arenes to afford predominantly (E,E)-1,4-diaryl-1,3-butadienes. The eliminated hydrogen can undergo addition to another molecule of vinyl arene, resulting in an overall disproportionation reaction with 1 equiv of ethyl arene formed for each equivalent of diarylbutadiene produced. Alternatively, sacrificial hydrogen acceptors (e.g., tert-butylethylene) can be added to the solution for this purpose. Diarylbutadienes are isolated in moderate to good yields, up to ca. 90% based on the disproportionation reaction. The results of DFT calculations and experiments with substituted styrenes indicate that the coupling proceeds via double C-H addition of a styrene molecule, at ß-vinyl and ortho-aryl positions, to give an iridium(III) metalloindene intermediate; this intermediate then adds a ß-vinyl C-H bond of a second styrene molecule before reductively eliminating product. Several metalloindene complexes have been isolated and crystallographically characterized. In accord with the proposed mechanism, substitution at the ortho-aryl positions of the styrene precludes dehydrogenative homocoupling. In the case of 2,4,6-trimethylstyrene, dehydrogenative coupling of ß-vinyl and ortho-methyl C-H bonds affords dimethylindene, demonstrating that the dehydrogenative coupling is not limited to C(sp2)-H bonds.

5.
J Org Chem ; 82(8): 4216-4225, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28394595

ABSTRACT

Activation parameters for the additions of PhCCl, F5-PhCCl, and 3,5-dinitro-PhCCl to tetramethylethylene, cyclohexene, and 1-hexene have been determined in decane. With the exception of two carbene/alkene combinations, Arrhenius correlations of ln kaddn vs 1/T were unimodal and linear, affording negative activation energies and entropies. The additions of PhCCl or F5-PhCCl to 1-hexene gave bimodal Arrhenius correlations. Comparisons to the analogous experimental data obtained in pentane and computational studies help to elucidate the observed behavior. Activation entropies decrease in parallel with activation enthalpies going from pentane to decane solvent, suggesting that enthalpy-entropy compensation is operative in these carbene additions. The bimodal Arrhenius behavior is proposed to result from carbene-alkene additions taking place intrinsically or extrinsically to decane solvent cage assemblies.

6.
J Am Chem Soc ; 139(18): 6338-6350, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28418249

ABSTRACT

NaBArF4 (sodium tetrakis[(3,5-trifluoromethyl)phenyl]borate) was found to catalyze reactions of (Phebox)IrIII(acetate) (Phebox = 2,6-bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl) complexes, including (i) ß-H elimination of (Phebox)Ir(OAc)(n-alkyl) to give (Phebox)Ir(OAc)(H) and the microscopic reverse, alkene insertion into the Ir-H bond of (Phebox)Ir(OAc)(H), and (ii) hydrogenolysis of the Ir-alkyl bond of (Phebox)Ir(OAc)(n-alkyl) and the microscopic reverse, C-H activation by (Phebox)Ir(OAc)(H), as indicated by H/D exchange experiments. For example, ß-H elimination of (Phebox)Ir(OAc)(n-octyl) (2-Oc) proceeded on a time scale of minutes at -15 °C in the presence of (0.4 mM) NaBArF4 as compared with a very slow reaction at 125 °C in the absence of NaBArF4. In addition to NaBArF4, other Lewis acids are also effective. Density functional theory calculations capture the effect of the Na+ cation and indicate that it operates primarily by promoting κ2-κ1 dechelation of the acetate anion, which opens the coordination site needed to allow the observed reaction to proceed. In accord with the effect on these individual stoichiometric reactions, NaBArF4 was also found to cocatalyze, with (Phebox)Ir(OAc)(H), the acceptorless dehydrogenation of n-dodecane.

7.
J Phys Chem A ; 120(5): 699-708, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26830199

ABSTRACT

Equilibrium constants and the associated thermodynamic parameters are reported for the equilibria established between the cationic carbene (N-methyl-3-pyridinium)chlorocarbene tetrafluoroborate (MePyr(+)CCl BF4(-), 3) and 1,3,5-trimethoxybenzene (TMB) to form a carbene-TMB complex, as well as between carbene 3 and chloride ion to form the zwitterion, N-methyl-3-pyridinium dichloromethide (10). These equilibrium constants and thermodynamic parameters are contrasted with analogous data for several related carbenes, and the influence of the pyridinium unit in carbene 3 is thereby highlighted. Computational studies augment and elucidate the experimental results.

8.
J Am Chem Soc ; 138(1): 149-63, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26652221

ABSTRACT

A study of electronic factors governing the thermodynamics of C-H and N-H bond addition to Ir(I) complexes was conducted. DFT calculations were performed on an extensive series of trans-(PH3)2IrXL complexes (L = NH3 and CO; X = various monodentate ligands) to parametrize the relative σ- and π-donating/withdrawing properties of the various ligands, X. Computed energies of oxidative addition of methane to a series of three- and four-coordinate Ir(I) complexes bearing an ancillary ligand, X, were correlated with the resulting (σ(X), π(X)) parameter set. Regression analysis indicates that the thermodynamics of addition of methane to trans-(PH3)2IrX are generally strongly disfavored by increased σ-donation from the ligand X, in contradiction to widely held views on oxidative addition. The trend for oxidative addition of methane to four-coordinate Ir(I) was closely related to that observed for the three-coordinate complexes, albeit slightly more complicated. The computational analysis was found to be consistent with the rates of reductive elimination of benzene from a series of isoelectronic Ir(III) phenyl hydride complexes, measured experimentally in this work and previously reported. Extending the analysis of ancillary ligand energetic effects to the oxidative addition of ammonia to three-coordinate Ir(I) complexes leads to the conclusion that increasing σ-donation by X also disfavors oxidative addition of N-H bonds to trans-(PH3)2IrX. However, coordination of NH3 to the Ir(I) center is disfavored even more strongly by increasing σ-donation by X, which explains why the few documented examples of H-NH2 oxidative addition to transition metals involve complexes with strongly σ-donating ligands situated trans to the site of addition. An orbital-based rationale for the observed results is presented.

9.
Chem Sci ; 7(4): 2579-2586, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-28660029

ABSTRACT

A rhodium complex based on the bis-phosphine carbazolide pincer ligand was investigated in the context of alkane dehydrogenation and in comparison with its iridium analogue. (carb-PNP)RhH2 was found to catalyze cyclooctane/t-butylethylene (COA/TBE) transfer dehydrogenation with a turnover frequency up to 10 min-1 and turnover numbers up to 340, in marked contrast with the inactive Ir analogue. TONs were limited by catalyst decomposition. Through a combination of mechanistic, experimental and computational (DFT) studies the difference between the Rh and Ir analogues was found to be attributable to the much greater accessibility of the 14-electron (carb-PNP)M(i) fragment in the case of Rh. In contrast, Ir is more strongly biased toward the M(iii) oxidation state. Thus (carb-PNP)RhH2 but not (carb-PNP)IrH2 can be dehydrogenated by sacrificial hydrogen acceptors, particularly TBE. The rate-limiting segment of the (carb-PNP)Rh-catalyzed COA/TBE transfer dehydrogenation cycle is found to be the dehydrogenation of COA. Within this segment, the rate-determining step is calculated to be (carb-PNP)Rh(cyclooctyl)(H) undergoing formation of a ß-H agostic intermediate, while the reverse step (loss of a ß-H agostic interaction) is rate-limiting for hydrogenation of the acceptors TBE and ethylene. Such a step has not previously been proposed as rate-limiting in the context of alkane dehydrogenation, nor, to our knowledge, has the reverse step been proposed as rate-limiting for olefin hydrogenation.

10.
Inorg Chem ; 54(18): 8896-904, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26317752

ABSTRACT

Reductive cleavage of C6F5SeSeC6F5 with elemental M (M = Cu, In, Sn, Pb) in pyridine results in the formation of (py)4Cu2(SeC6F5)2, (py)2In(SeC6F5)3, (py)2Sn(SeC6F5)2, and (py)2Pb(SeC6F5)2. Each group adopts a unique structure: the Cu(I) compound crystallizes as a dimer with a pair of bridging selenolates, two pyridine ligands coordinating to each Cu(I) ion, and a short Cu(I)-Cu(I) distance (2.595 Å). The indium compound crystallizes as monometallic five-coordinate (py)2In(SeC6F5)3 in a geometry that approximates a trigonal bipyramidal structure with two axial pyridine ligands and three selenolates. The tin and lead derivatives (py)2M(SeC6F5)2 are also monomeric, but they adopt nearly octahedral geometries with trans pyridine ligands, a pair of cis-selenolates, and two "empty" cis-positions on the octahedron that are oriented toward extremely remote selenolates (M-Se = 3.79 Å (Sn), 3.70 Å (Pb)) from adjacent molecules. Two of the four compounds (Cu, In) exhibit intermolecular π-π stacking arrangements in the solid state, whereas the stacking of molecules for the other two compounds (Sn, Pb) appears to be based upon molecular shape and crystal packing forces. All compounds are volatile and decompose at elevated temperatures to give MSex and Se(C6F5)2.The electronic structures of the dimeric Cu compound and monomeric (py)2M(SeC6F5)2 (M = Sn, Pb) were examined with density functional theory calculations.

11.
J Am Chem Soc ; 137(31): 9894-911, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26200219

ABSTRACT

We report the transfer-dehydrogenation of gas-phase alkanes catalyzed by solid-phase, molecular, pincer-ligated iridium catalysts, using ethylene or propene as hydrogen acceptor. Iridium complexes of sterically unhindered pincer ligands such as (iPr4)PCP, in the solid phase, are found to give extremely high rates and turnover numbers for n-alkane dehydrogenation, and yields of terminal dehydrogenation product (α-olefin) that are much higher than those previously reported for solution-phase experiments. These results are explained by mechanistic studies and DFT calculations which jointly lead to the conclusion that olefin isomerization, which limits yields of α-olefin from pincer-Ir catalyzed alkane dehydrogenation, proceeds via two mechanistically distinct pathways in the case of ((iPr4)PCP)Ir. The more conventional pathway involves 2,1-insertion of the α-olefin into an Ir-H bond of ((iPr4)PCP)IrH2, followed by 3,2-ß-H elimination. The use of ethylene as hydrogen acceptor, or high pressures of propene, precludes this pathway by rapid hydrogenation of these small olefins by the dihydride. The second isomerization pathway proceeds via α-olefin C-H addition to (pincer)Ir to give an allyl intermediate as was previously reported for ((tBu4)PCP)Ir. The improved understanding of the factors controlling rates and selectivity has led to solution-phase systems that afford improved yields of α-olefin, and provides a framework required for the future development of more active and selective catalytic systems.

12.
J Org Chem ; 80(15): 7590-3, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26181300

ABSTRACT

Activation parameters are reported for additions of phenylchlorocarbene (PhCCl), pentafluorophenylchlorocarbene (F5-PhCCl), and 3,5-dinitrophenyl-chlorocarbene (3,5-DN-PhCCl) to tetramethylethylene (TME), cyclohexene, and 1-hexene. The order of activation enthalpies is F5-PhCCl > PhCCl > 3,5-DN-PhCCl. Activation enthalpies also increase as the degree of alkene alkylation decreases. In general, the entropies of activation increase in tandem with the enthalpies of activation.

13.
J Phys Chem A ; 119(15): 3556-62, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25845282

ABSTRACT

(N-Methyl-3-pyridinium)chlorocarbene tetrafluoroborate (MePyr(+)CCl BF4(-), 4) is generated by laser flash photolysis (LFP) of the corresponding diazirine (5) and reacted with tetramethylethylene, cyclohexene, 1-hexene, 2-ethyl-1-butene, methyl acrylate, and acrylonitrile. Absolute rate constants are measured for these carbene-alkene addition reactions, and activation parameters are obtained for additions of MePyr(+)CCl BF4(-) to tetramethylethylene, cyclohexene, and 1-hexene. MePyr(+)CCl BF4(-) is computed to be a highly reactive, electrophilic, singlet carbene, and experiments are in accord with expectations. Its activation parameters are compared with those of CF3CCl, CCl2, CClF, and CF2. In all cases, enthalpy-entropy compensation is observed, with ΔH(‡) and ΔS(‡) decreasing in tandem as carbenic stability decreases. A qualitative explanation is offered for this phenomenon.

14.
J Am Chem Soc ; 137(7): 2730-7, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25668053

ABSTRACT

Experimental and computational studies find that dimethylcarbene (DMC), the parent dialkylcarbene, is both predicted to be and functions as a very reactive nucleophilic carbene in addition reactions with five simple alkenes. Activation energies and enthalpies for DMC additions to 2-ethyl-1-butene and methyl acrylate are computed and observed to be negative.

15.
Dalton Trans ; 43(43): 16354-65, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25250874

ABSTRACT

We report that pincer-ligated iridium complexes undergo oxidative addition of the strained C-C bond of biphenylene. The sterically crowded species ((tBu)PCP)Ir ((R)PCP = κ(3)-1,3-C6H3(CH2PR2)2) initially reacts with biphenylene to selectively add the C(1)-H bond, to give a relatively stable aryl hydride complex. Upon heating at 125 °C for 24 h, full conversion to the C-C addition product, ((tBu)PCP)Ir(2,2'-biphenyl), is observed. The much less crowded ((iPr)PCP)Ir undergoes relatively rapid C-C addition at room temperature. The large difference in the apparent barriers to C-C addition is notable in view of the fact that the addition products are not particularly crowded, since the planar biphenyl unit adopts an orientation perpendicular to the plane of the (R)PCP ligands. Based on DFT calculations the large difference in the barriers to C-C addition can be explained in terms of a "tilted" transition state. In the transition state the biphenylene cyclobutadiene core is calculated to be strongly tilted (ca. 50°-60°) relative to its orientation in the product in the plane perpendicular to that of the PCP ligand; this tilt results in very short, unfavorable, non-bonding contacts with the t-butyl groups in the case of the (tBu)PCP ligand. The conclusions of the biphenylene studies are applied to interpret computational results for cleavage of the unstrained C-C bond of biphenyl by ((R)PCP)Ir.


Subject(s)
Carbon/chemistry , Coordination Complexes/chemistry , Hydrogen/chemistry , Iridium/chemistry , Biphenyl Compounds/chemistry , Crystallography, X-Ray , Ligands , Molecular Conformation , Thermodynamics
16.
J Phys Chem A ; 118(32): 6230-8, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25094025

ABSTRACT

Reactions of p-nitrophenylchlorocarbene (PNPCC) with various dibenzo crown ethers produce O-ylides and π-complexes; the reactions can be followed via the spectral signatures of the carbene and the products. The O-ylides form most rapidly, but over time they decay in favor of the more stable π-complexes. Extensive computational studies support and refine appropriate structural and mechanistic conjectures. Reactions of PNPCC with monobenzo crown ethers afford only the spectral signatures of O-ylides; monobenzo π-complexes are either not formed in significant concentrations or are spectroscopically silent.

17.
J Am Chem Soc ; 136(25): 8891-4, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24896665

ABSTRACT

While the addition of C-H bonds to three-coordinate Ir(I) fragments is a central theme in the field of C-H bond activation, addition to square planar four-coordinate complexes is far less precedented. The dearth of such reactions may be attributed, at least in part, to kinetic factors elucidated in seminal work by Hoffmann. C-H additions to square planar carbonyl complexes in particular are unprecedented, in contrast to the extensive chemistry of oxidative addition of other substrates (e.g., H2, HX) to Vaska's Complex and related species. We report that Bronsted acids will catalyze the addition of the alkynyl C-H bond of phenylacetylene to the pincer complex (PCP)Ir(CO). The reaction occurs to give exclusively the trans-C-H addition product. Our proposed mechanism, based on kinetics and DFT calculations, involves initial protonation of (PCP)Ir(CO) to generate a highly active five-coordinate cationic intermediate, which forms a phenylacetylene adduct that is then deprotonated to give product.

18.
J Chem Phys ; 140(14): 144304, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24735296

ABSTRACT

We present the first study of intermolecular interactions between nitrous oxide (N2O) and three representative aromatic compounds (ACs): phenol, cresol, and toluene. The infrared spectroscopic experiments were performed in a Ne matrix and were supported by high-level quantum chemical calculations. Comparisons of the calculated and experimental vibrational spectra provide direct identification and characterization of the 1:1 N2O-AC complexes. Our results show that N2O is capable of forming non-covalently bonded complexes with ACs. Complex formation is dominated by dispersion forces, and the interaction energies are relatively low (about -3 kcal mol(-1)); however, the complexes are clearly detected by frequency shifts of the characteristic bands. These results suggest that N2O can be bound to the amino-acid residues tyrosine or phenylalanine in the form of π complexes.

19.
J Am Chem Soc ; 136(18): 6672-83, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24746026

ABSTRACT

New carbazolide-based iridium pincer complexes ((carb)PNP)Ir(C2H4), 3a, and ((carb)PNP)Ir(H)2, 3b, have been prepared and characterized. The dihydride, 3b, reacts with ethylene to yield the cis-dihydride ethylene complex cis-((carb)PNP)Ir(C2H4)(H)2. Under ethylene this complex reacts slowly at 70 °C to yield ethane and the ethylene complex, 3a. Kinetic analysis establishes that the reaction rate is dependent on ethylene concentration and labeling studies show reversible migratory insertion to form an ethyl hydride complex prior to formation of 3a. Exposure of cis-((carb)PNP)Ir(C2H4)(H)2 to hydrogen results in very rapid formation of ethane and dihydride, 3b. DFT analysis suggests that ethane elimination from the ethyl hydride complex is assisted by ethylene through formation of ((carb)PNP)Ir(H)(Et)(C2H4) and by H2 through formation of ((carb)PNP)Ir(H)(Et)(H2). Elimination of ethane from Ir(III) complex ((carb)PNP)Ir(H)(Et)(H2) is calculated to proceed through an Ir(V) complex ((carb)PNP)Ir(H)3(Et) which reductively eliminates ethane with a very low barrier to return to the Ir(III) dihydride, 3b. Under catalytic hydrogenation conditions (C2H4/H2), cis-((carb)PNP)Ir(C2H4)(H)2 is the catalyst resting state, and the catalysis proceeds via an Ir(III)/Ir(V)/Ir(III) cycle. This is in sharp contrast to isoelectronic (PCP)Ir systems in which hydrogenation proceeds through an Ir(III)/Ir(I)/Ir(III) cycle. The basis for this remarkable difference is discussed.

20.
J Am Chem Soc ; 136(13): 4885-8, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24650151

ABSTRACT

Computational and experimental results demonstrate that adamantanylidene (1) behaves as a highly reactive nucleophile toward common alkenes. It is the only known saturated nucleophilic carbene that lacks direct or vinylogous heteroatomic substitution. The activation energy and enthalpy for addition of 1 to methyl acrylate are the most negative values yet encountered in any carbene-alkene addition.

SELECTION OF CITATIONS
SEARCH DETAIL
...