Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Article in English | MEDLINE | ID: mdl-38713096

ABSTRACT

OBJECTIVES: (1) To plot the trajectory of humoral and cellular immune responses to the primary (two-dose) COVID-19 mRNA series and the third/booster dose in B-cell-depleted multiple sclerosis (MS) patients up to 2 years post-vaccination; (2) to identify predictors of immune responses to vaccination; and (3) to assess the impact of intercurrent COVID-19 infections on SARS CoV-2-specific immunity. METHODS: Sixty ocrelizumab-treated MS patients were enrolled from NYU (New York) and University of Colorado (Anschutz) MS Centers. Samples were collected pre-vaccination, and then 4, 12, 24, and 48 weeks post-primary series, and 4, 12, 24, and 48 weeks post-booster. Binding anti-Spike antibody responses were assessed with multiplex bead-based immunoassay (MBI) and electrochemiluminescence (Elecsys®, Roche Diagnostics), and neutralizing antibody responses with live-virus immunofluorescence-based microneutralization assay. Spike-specific cellular responses were assessed with IFNγ/IL-2 ELISpot (Invitrogen) and, in a subset, by sequencing complementarity determining regions (CDR)-3 within T-cell receptors (Adaptive Biotechnologies). A linear mixed-effect model was used to compare antibody and cytokine levels across time points. Multivariate analyses identified predictors of immune responses. RESULTS: The primary vaccination induced an 11- to 208-fold increase in binding and neutralizing antibody levels and a 3- to 4-fold increase in IFNγ/IL-2 responses, followed by a modest decline in antibody but not cytokine responses. Booster dose induced a further 3- to 5-fold increase in binding antibodies and 4- to 5-fold increase in IFNγ/IL-2, which were maintained for up to 1 year. Infections had a variable impact on immunity. INTERPRETATION: Humoral and cellular benefits of COVID-19 vaccination in B-cell-depleted MS patients were sustained for up to 2 years when booster doses were administered.

2.
Nat Commun ; 15(1): 2140, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459027

ABSTRACT

T cell receptors (TCR) are pivotal in mediating tumour cell cytolysis via recognition of mutation-derived tumour neoantigens (neoAgs) presented by major histocompatibility class-I (MHC-I). Understanding the factors governing the emergence of neoAg from somatic mutations is a major focus of current research. However, the structural and cellular determinants controlling TCR recognition of neoAgs remain poorly understood. This study describes the multi-level analysis of a model neoAg from the B16F10 murine melanoma, H2-Db/Hsf2 p.K72N68-76, as well as its cognate TCR 47BE7. Through cellular, molecular and structural studies we demonstrate that the p.K72N mutation enhances H2-Db binding, thereby improving cell surface presentation and stabilizing the TCR 47BE7 epitope. Furthermore, TCR 47BE7 exhibited high functional avidity and selectivity, attributable to a broad, stringent, binding interface enabling recognition of native B16F10 despite low antigen density. Our findings provide insight into the generation of anchor-residue modified neoAg, and emphasize the value of molecular and structural investigations of neoAg in diverse MHC-I contexts for advancing the understanding of neoAg immunogenicity.


Subject(s)
Melanoma , Receptors, Antigen, T-Cell , Animals , Mice , Receptors, Antigen, T-Cell/metabolism , Melanoma/genetics , Mutation , Epitopes, T-Lymphocyte
3.
Oncoimmunology ; 12(1): 2261264, 2023.
Article in English | MEDLINE | ID: mdl-38126033

ABSTRACT

Patients with preexisting autoimmune disease (pAID) are generally excluded from clinical trials for immune checkpoint inhibitors (ICIs) for cancer due to concern of flaring pAID. In this multi-center, retrospective observational study, we compared safety of ICI combination (two ICI agents) versus monotherapy in cancer patients with pAIDs. The primary outcome was time to AEs (immune-related adverse events (irAEs) and/or pAID flares), with progression-free survival (PFS) and overall survival as secondary outcomes. Sixty-four of 133 patients (48%) received ICI combination and 69 (52%) monotherapy. Most had melanoma (32%) and lung cancer (31%). Most common pAIDs were rheumatic (28%) and dermatologic (23%). Over a median follow-up of 15 months (95%CI, 11-18 mo), the cumulative incidence of any-grade irAEs was higher for combination compared to monotherapy (subdistribution hazard ratio (sHR) 2.27, 95%CI 1.35-3.82). No statistically significant difference was observed in high-grade irAEs (sHR 2.31 (0.95-5.66), P = .054) or the cumulative incidence of pAID flares. There was no statistically significant difference for melanoma PFS between combination versus monotherapy (23.2 vs. 17.1mo, P = .53). The combination group was more likely to discontinue or hold ICI, but > 50% of the combination group was still able to continue ICI therapy. No treatment-related deaths occurred. In our cohort with pAIDs, patients had a tolerable toxicity profile with ICI combination therapy. Our results support the use of ICI combination if deemed necessary for cancer therapy in patients with pAIDs, since the ICI toxicities were comparable to monotherapy, able to be effectively managed and mostly did not require ICI interruption.


Subject(s)
Autoimmune Diseases , Lung Neoplasms , Melanoma , Humans , Autoimmune Diseases/drug therapy , Autoimmune Diseases/chemically induced , Immune Checkpoint Inhibitors/adverse effects , Lung Neoplasms/drug therapy , Melanoma/drug therapy
4.
J Transl Med ; 21(1): 508, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507765

ABSTRACT

Outcomes for patients with melanoma have improved over the past decade with the clinical development and approval of immunotherapies targeting immune checkpoint receptors such as programmed death-1 (PD-1), programmed death ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen-4 (CTLA-4). Combinations of these checkpoint therapies with other agents are now being explored to improve outcomes and enhance benefit-risk profiles of treatment. Alternative inhibitory receptors have been identified that may be targeted for anti-tumor immune therapy, such as lymphocyte-activation gene-3 (LAG-3), as have several potential target oncogenes for molecularly targeted therapy, such as tyrosine kinase inhibitors. Unfortunately, many patients still progress and acquire resistance to immunotherapy and molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been shown to improve prognosis compared to monotherapy. The number of new combinations treatment under development for melanoma provides options for the number of patients to achieve a therapeutic benefit. Many diagnostic and prognostic assays have begun to show clinical applicability providing additional tools to optimize and individualize treatments. However, the question on the optimal algorithm of first- and later-line therapies and the search for biomarkers to guide these decisions are still under investigation. This year, the Melanoma Bridge Congress (Dec 1st-3rd, 2022, Naples, Italy) addressed the latest advances in melanoma research, focusing on themes of paramount importance for melanoma prevention, diagnosis and treatment. This included sessions dedicated to systems biology on immunotherapy, immunogenicity and gene expression profiling, biomarkers, and combination treatment strategies.


Subject(s)
Melanoma , Humans , Melanoma/therapy , Melanoma/drug therapy , Immunotherapy , CTLA-4 Antigen , Italy
6.
Nat Commun ; 14(1): 3763, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353482

ABSTRACT

Altered protein phosphorylation in cancer cells often leads to surface presentation of phosphopeptide neoantigens. However, their role in cancer immunogenicity remains unclear. Here we describe a mechanism by which an HLA-B*0702-specific acute myeloid leukemia phosphoneoantigen, pMLL747-755 (EPR(pS)PSHSM), is recognized by a cognate T cell receptor named TCR27, a candidate for cancer immunotherapy. We show that the replacement of phosphoserine P4 with serine or phosphomimetics does not affect pMHC conformation or peptide-MHC affinity but abrogates TCR27-dependent T cell activation and weakens binding between TCR27 and pMHC. Here we describe the crystal structures for TCR27 and cognate pMHC, map of the interface produced by nuclear magnetic resonance, and a ternary complex generated using information-driven protein docking. Our data show that non-covalent interactions between the epitope phosphate group and TCR27 are crucial for TCR specificity. This study supports development of new treatment options for cancer patients through target expansion and TCR optimization.


Subject(s)
Phosphopeptides , Receptors, Antigen, T-Cell , Humans , Phosphopeptides/metabolism , Protein Binding
7.
Nat Commun ; 14(1): 2616, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147290

ABSTRACT

The TCR integrates forces in its triggering process upon interaction with pMHC. Force elicits TCR catch-slip bonds with strong pMHCs but slip-only bonds with weak pMHCs. We develop two models and apply them to analyze 55 datasets, demonstrating the models' ability to quantitatively integrate and classify a broad range of bond behaviors and biological activities. Comparing to a generic two-state model, our models can distinguish class I from class II MHCs and correlate their structural parameters with the TCR/pMHC's potency to trigger T cell activation. The models are tested by mutagenesis using an MHC and a TCR mutated to alter conformation changes. The extensive comparisons between theory and experiment provide model validation and testable hypothesis regarding specific conformational changes that control bond profiles, thereby suggesting structural mechanisms for the inner workings of the TCR mechanosensing machinery and plausible explanations of why and how force may amplify TCR signaling and antigen discrimination.


Subject(s)
Receptors, Antigen, T-Cell , Signal Transduction , Receptors, Antigen, T-Cell/metabolism , Lymphocyte Activation , Genes, MHC Class II , Mutagenesis , Protein Binding
8.
Res Sq ; 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36778273

ABSTRACT

Physical interactions between T cell receptors (TCRs) and mutation-derived tumour neoantigens (neoAg) presented by major histocompatibility class-I (MHC-I) enable sensitive and specific cytolysis of tumour cells. Adoptive transfer of neoAg-reactive T cells in patients is correlated with response to immunotherapy; however, the structural and cellular mechanisms of neoAg recognition remain poorly understood. We have identified multiple cognate neoAg:TCRs from B16F10, a common murine implantable tumour model of melanoma. We identified a high affinity TCR targeting H2-Db-restricted Hsf2K72N that conferred specific recognition of B16F10 in vitro and in vivo. Structural characterization of the peptide-MHC (pMHC) binary and pMHC:TCR ternary complexes yielded high-resolution crystal structures, revealing the formation of a solvent-exposed hydrophobic arch in H2-Db that enables multiple intermolecular contacts between pMHC and the TCR. These features of structural stability strikingly mimic that of a previously published influenza peptide-H2-Db complex and its corresponding TCR, suggesting that there are shared structural motifs between neoantigens and viral peptides that explain their shared immunogenicity.

9.
Cancers (Basel) ; 16(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38201446

ABSTRACT

BACKGROUND: We previously reported a higher incidence of a pathogenic germline variant in the kinase insert domain receptor (KDR) in melanoma patients compared to the general population. Here, we dissect the impact of this genotype on melanoma tumor growth kinetics, tumor phenotype, and response to treatment with immune checkpoint inhibitors (ICIs) or targeted therapy. METHODS: The KDR genotype was determined and the associations between the KDR Q472H variant (KDR-Var), angiogenesis, tumor immunophenotype, and response to MAPK inhibition or ICI treatment were examined. Melanoma B16 cell lines were transfected with KDR-Var or KDR wild type (KDR-WT), and the differences in tumor kinetics were evaluated. We also examined the impact of KDR-Var on the response of melanoma cells to a combination of VEGFR inhibition with MAPKi. RESULTS: We identified the KDR-Var genotype in 81/489 (37%) patients, and it was associated with a more angiogenic (p = 0.003) and immune-suppressive tumor phenotype. KDR-Var was also associated with decreased PFS to MAPKi (p = 0.022) and a trend with worse PFS to anti-PD1 therapy (p = 0.06). KDR-Var B16 murine models had increased average tumor volume (p = 0.0027) and decreased CD45 tumor-infiltrating lymphocytes (p = 0.0282). The anti-VEGFR treatment Lenvatinib reduced the tumor size of KDR-Var murine tumors (p = 0.0159), and KDR-Var cells showed synergistic cytotoxicity to the combination of dabrafenib and lenvatinib. CONCLUSIONS: Our data demonstrate a role of germline KDR-Var in modulating melanoma behavior, including response to treatment. Our data also suggest that anti-angiogenic therapy might be beneficial in patients harboring this genotype, which needs to be tested in clinical trials.

10.
Clin Cancer Res ; 28(18): 4121-4130, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36106402

ABSTRACT

PURPOSE: Adjuvant immunotherapy produces durable benefit for patients with resected melanoma, but many develop recurrence and/or immune-related adverse events (irAE). We investigated whether baseline serum autoantibody (autoAb) signatures predicted recurrence and severe toxicity in patients treated with adjuvant nivolumab, ipilimumab, or ipilimumab plus nivolumab. EXPERIMENTAL DESIGN: This study included 950 patients: 565 from CheckMate 238 (408 ipilimumab versus 157 nivolumab) and 385 from CheckMate 915 (190 nivolumab versus 195 ipilimumab plus nivolumab). Serum autoAbs were profiled using the HuProt Human Proteome Microarray v4.0 (CDI Laboratories, Mayaguez, PR). Analysis of baseline differentially expressed autoAbs was followed by recurrence and severe toxicity signature building for each regimen, testing of the signatures, and additional independent validation for nivolumab using patients from CheckMate 915. RESULTS: In the nivolumab independent validation cohort, high recurrence score predicted significantly worse recurrence-free survival [RFS; adjusted HR (aHR), 3.60; 95% confidence interval (CI), 1.98-6.55], and outperformed a model composed of clinical variables including PD-L1 expression (P < 0.001). Severe toxicity score was a significant predictor of severe irAEs (aHR, 13.53; 95% CI, 2.59-86.65). In the ipilimumab test cohort, high recurrence score was associated with significantly worse RFS (aHR, 3.21; 95% CI, 1.38-7.45) and severe toxicity score significantly predicted severe irAEs (aHR, 11.04; 95% CI, 3.84-37.25). In the ipilimumab plus nivolumab test cohort, high autoAb recurrence score was associated with significantly worse RFS (aHR, 6.45; 95% CI, 1.48-28.02), and high severe toxicity score was significantly associated with severe irAEs (aHR, 23.44; 95% CI, 4.10-212.50). CONCLUSIONS: Baseline serum autoAb signatures predicted recurrence and severe toxicity in patients treated with adjuvant immunotherapy. Prospective testing of the signatures that include datasets with longer follow-up and rare but more severe toxicities will help determine their generalizability and potential clinical utility. See related commentary by Hassel and Luke, p. 3914.


Subject(s)
Adjuvants, Immunologic , Antineoplastic Combined Chemotherapy Protocols , Autoantibodies , Melanoma , Adjuvants, Immunologic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Autoantibodies/blood , Humans , Immune Checkpoint Inhibitors , Ipilimumab , Nivolumab , Prospective Studies
11.
Ann Clin Transl Neurol ; 9(10): 1643-1659, 2022 10.
Article in English | MEDLINE | ID: mdl-36165097

ABSTRACT

OBJECTIVE: To compare "hybrid immunity" (prior COVID-19 infection plus vaccination) and post-vaccination immunity to SARS CoV-2 in MS patients on different disease-modifying therapies (DMTs) and to assess the impact of vaccine product and race/ethnicity on post-vaccination immune responses. METHODS: Consecutive MS patients from NYU MS Care Center (New York, NY), aged 18-60, who completed primary COVID-19 vaccination series ≥6 weeks previously were evaluated for SARS CoV-2-specific antibody responses with electro-chemiluminescence and multiepitope bead-based immunoassays and, in a subset, live virus immunofluorescence-based microneutralization assay. SARS CoV-2-specific cellular responses were assessed with cellular stimulation TruCulture IFNγ and IL-2 assay and, in a subset, with IFNγ and IL-2 ELISpot assays. Multivariate analyses examined associations between immunologic responses and prior COVID-19 infection while controlling for age, sex, DMT at vaccination, time-to-vaccine, and vaccine product. RESULTS: Between 6/01/2021 and 11/11/2021, 370 MS patients were recruited (mean age 40.6 years; 76% female; 53% non-White; 22% with prior infection; common DMT classes: ocrelizumab 40%; natalizumab 15%, sphingosine-1-phosphate receptor modulators 13%; and no DMT 8%). Vaccine-to-collection time was 18.7 (±7.7) weeks and 95% of patients received mRNA vaccines. In multivariate analyses, patients with laboratory-confirmed prior COVID-19 infection had significantly increased antibody and cellular post-vaccination responses compared to those without prior infection. Vaccine product and DMT class were independent predictors of antibody and cellular responses, while race/ethnicity was not. INTERPRETATION: Prior COVID-19 infection is associated with enhanced antibody and cellular post-vaccine responses independent of DMT class and vaccine type. There were no differences in immune responses across race/ethnic groups.


Subject(s)
COVID-19 , Viral Vaccines , Adult , Antibodies, Viral , COVID-19 Vaccines , Female , Humans , Interleukin-2 , Male , Natalizumab , SARS-CoV-2 , Sphingosine-1-Phosphate Receptors , Viral Vaccines/genetics
12.
J Transl Med ; 20(1): 391, 2022 09 04.
Article in English | MEDLINE | ID: mdl-36058945

ABSTRACT

Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.


Subject(s)
COVID-19 , Melanoma , Biomarkers , Humans , Immunotherapy/methods , Italy , Melanoma/genetics , Pandemics , Tumor Microenvironment
13.
Ann Neurol ; 91(6): 782-795, 2022 06.
Article in English | MEDLINE | ID: mdl-35289960

ABSTRACT

OBJECTIVE: The objective of this study was to determine the impact of multiple sclerosis (MS) disease-modifying therapies (DMTs) on the development of cellular and humoral immunity to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. METHODS: Patients with MS aged 18 to 60 years were evaluated for anti-nucleocapsid and anti-Spike receptor-binding domain (RBD) antibody with electro-chemiluminescence immunoassay; antibody responses to Spike protein, RBD, N-terminal domain with multiepitope bead-based immunoassays (MBI); live virus immunofluorescence-based microneutralization assay; T-cell responses to SARS-CoV-2 Spike using TruCulture enzyme-linked immunosorbent assay (ELISA); and IL-2 and IFNγ ELISpot assays. Assay results were compared by DMT class. Spearman correlation and multivariate analyses were performed to examine associations between immunologic responses and infection severity. RESULTS: Between January 6, 2021, and July 21, 2021, 389 patients with MS were recruited (mean age 40.3 years; 74% women; 62% non-White). Most common DMTs were ocrelizumab (OCR)-40%; natalizumab -17%, Sphingosine 1-phosphate receptor (S1P) modulators -12%; and 15% untreated. One hundred seventy-seven patients (46%) had laboratory evidence of SARS-CoV-2 infection; 130 had symptomatic infection, and 47 were asymptomatic. Antibody responses were markedly attenuated in OCR compared with other groups (p ≤0.0001). T-cell responses (IFNγ) were decreased in S1P (p = 0.03), increased in natalizumab (p <0.001), and similar in other DMTs, including OCR. Cellular and humoral responses were moderately correlated in both OCR (r = 0.45, p = 0.0002) and non-OCR (r = 0.64, p <0.0001). Immune responses did not differ by race/ethnicity. Coronavirus disease 2019 (COVID-19) clinical course was mostly non-severe and similar across DMTs; 7% (9/130) were hospitalized. INTERPRETATION: DMTs had differential effects on humoral and cellular immune responses to SARS-CoV-2 infection. Immune responses did not correlate with COVID-19 clinical severity in this relatively young and nondisabled group of patients with MS. ANN NEUROL 2022;91:782-795.


Subject(s)
COVID-19 , Multiple Sclerosis , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Viral , Ethnicity , Female , Humans , Immunity, Cellular , Immunity, Humoral , Male , Natalizumab/therapeutic use , SARS-CoV-2
14.
Cancer Med ; 10(21): 7457-7465, 2021 11.
Article in English | MEDLINE | ID: mdl-34647433

ABSTRACT

BACKGROUND: Immune-related adverse events (irAEs) are common, clinically significant autoinflammatory toxicities observed with immune checkpoint inhibitors (ICI). Preexisting immune-mediated inflammatory disease (pre-IMID) is considered a relative contraindication to ICI due to the risk of inciting flares. Improved understanding of the risks and benefits of treating pre-IMID patients with ICI is needed. METHODS: We studied melanoma patients treated with ICI and enrolled in a prospective clinicopathological database. We compiled a list of 23 immune-mediated inflammatory diseases and evaluated their presence prior to ICI. We tested the associations between pre-IMID and progression-free survival (PFS), overall survival (OS), and irAEs. RESULTS: In total, 483 melanoma patients were included in the study; 74 had pre-IMID and 409 did not. In patients receiving ICI as a standard of care (SoC), pre-IMID was significantly associated with irAEs (p = 0.04) as well as improved PFS (p = 0.024) and OS (p = 0.007). There was no significant association between pre-IMID and irAEs (p = 0.54), PFS (p = 0.197), or OS (p = 0.746) in patients treated through a clinical trial. Pre-IMID was significantly associated with improved OS in females (p = 0.012), but not in males (p = 0.35). CONCLUSIONS: The dichotomy of the impact of pre-IMID on survival and irAEs in SoC versus clinical trial patients may reflect the inherit selection bias in patients accrued in clinical trials. Future mechanistic work is required to better understand the differences in outcomes between female and male pre-IMID patients. Our data challenge the notion that clinicians should avoid ICI in pre-IMID patients, although close monitoring and prospective clinical trials evaluating ICI in this population are warranted.


Subject(s)
Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Inflammation/immunology , Melanoma/drug therapy , Melanoma/immunology , Aged , Clinical Trials as Topic , Female , Humans , Male , Melanoma/mortality , Middle Aged , Prospective Studies , Risk Factors , Selection Bias , Sex Factors , Survival Analysis
15.
J Transl Med ; 19(1): 278, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193182

ABSTRACT

Advances in immune checkpoint therapy and targeted therapy have led to improvement in overall survival for patients with advanced melanoma. Single agent checkpoint PD-1 blockade and combination with BRAF/MEK targeted therapy demonstrated benefit in overall survival (OS). Superior response rates have been demonstrated with combined PD-1/CTLA-4 blockade, with a significant OS benefit compared with single-agent PD-1 blockade. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers but they have yet to be fully characterized and implemented clinically. Overall, the progress in melanoma therapeutics and translational research will help to optimize treatment regimens to overcome resistance and develop robust biomarkers to guide clinical decision-making. During the Melanoma Bridge meeting (December 3rd-5th, 2020, Italy) we reviewed the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine.


Subject(s)
Immunotherapy , Melanoma , Humans , Italy , Melanoma/drug therapy , Molecular Targeted Therapy , Tumor Microenvironment
16.
Breast Cancer Res Treat ; 185(1): 85-94, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32949350

ABSTRACT

PURPOSE: Immunotherapy has recently been shown to improve outcomes for advanced PD-L1-positive triple-negative breast cancer (TNBC) in the Impassion130 trial, leading to FDA approval of the first immune checkpoint inhibitor in combination with taxane chemotherapy. To further develop predictive biomarkers and improve therapeutic efficacy of the combination, interrogation of the tumor immune microenvironment before therapy as well as during each component of treatment is crucial. Here we use single-cell RNA sequencing (scRNA-seq) on tumor biopsies to assess immune cell changes from two patients with advanced TNBC treated in a prospective trial at predefined serial time points, before treatment, on taxane chemotherapy and on chemo-immunotherapy. METHODS: Both patients (one responder and one progressor) received the trial therapy, in cycle 1 nab-paclitaxel given as single agent, in cycle 2 nab-paclitaxel in combination with pembrolizumab. Tumor core biopsies were obtained at baseline, 3 weeks (after cycle 1, chemotherapy alone) and 6 weeks (after cycle 2, chemo-immunotherapy). Single-cell RNA sequencing (scRNA-seq) of both cancer cells and infiltrating immune cells isolated were performed from fresh tumor core biopsy specimens by 10 × chromium sequencing. RESULTS: ScRNA-seq analysis showed significant baseline heterogeneity of tumor-infiltrating immune cell populations between the two patients as well as modulation of the tumor microenvironment by chemotherapy and immunotherapy. In the responding patient there was a population of PD-1high-expressing T cells which significantly decreased after nab-paclitaxel plus pembrolizumab treatment as well as a presence of tissue-resident memory T cells (TRM). In contrast, tumors from the patient with rapid disease progression showed a prevalent and persistent myeloid compartment. CONCLUSIONS: Our study provides a deep cellular analysis of on-treatment changes during chemo-immunotherapy for advanced TNBC, demonstrating not only feasibility of single-cell analyses on serial tumor biopsies but also the heterogeneity of TNBC and differences in on-treatment changes in responder versus progressor.


Subject(s)
Triple Negative Breast Neoplasms , Albumins , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Humans , Paclitaxel , Prospective Studies , Single-Cell Analysis , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment
17.
J Immunother Cancer ; 8(1)2020 04.
Article in English | MEDLINE | ID: mdl-32303612

ABSTRACT

BACKGROUND: High C reactive protein (CRP) levels have been reported to be associated with a poor clinical outcome in a number of malignancies and with programmed cell death protein 1 immune checkpoint blockade in patients with advanced cancer. Little is known about the direct effects of CRP on adaptive immunity in cancer. Therefore, we investigated how CRP impacted the function of T cells and dendritic cells (DCs) from patients with melanoma. METHODS: The effects of CRP on proliferation, function, gene expression and phenotype of patient T cells and DCs, and expansion of MART-1 antigen-specific T cells were analyzed by multicolor flow cytometry and RNA-seq. Additionally, serum CRP levels at baseline from patients with metastatic melanoma treated on the Checkmate-064 clinical trial were assessed by a Luminex assay. RESULTS: In vitro, CRP inhibited proliferation, activation-associated phenotypes and the effector function of activated CD4+ and CD8+ T cells from patients with melanoma. CRP-treated T cells expressed high levels of interleukin-1ß, which is known to enhance CRP production from the liver. CRP also suppressed formation of the immune synapse and inhibited early events in T-cell receptor engagement. In addition, CRP downregulated the expression of costimulatory molecules on mature DCs and suppressed expansion of MART-1-specific CD8+ T cells in a dose-dependent manner by impacting on both T cells and antigen-presenting cells. High-serum CRP levels at baseline were significantly associated with a shorter survival in both nivolumab-treated and ipilimumab-treated patients. CONCLUSIONS: These findings suggest that high levels of CRP induce an immunosuppressive milieu in melanoma and support the blockade of CRP as a therapeutic strategy to enhance immune checkpoint therapies in cancer. TRIAL REGISTRATION NUMBER: NCT01783938 and NCT02983006.


Subject(s)
Adaptive Immunity , C-Reactive Protein/metabolism , Melanoma/immunology , Skin Neoplasms/immunology , Tumor Escape , Acute-Phase Proteins/immunology , Acute-Phase Proteins/metabolism , Adult , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , C-Reactive Protein/analysis , Cell Proliferation , Clinical Trials, Phase II as Topic , Dendritic Cells/immunology , Dendritic Cells/metabolism , Drug Resistance, Neoplasm/immunology , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Ipilimumab/pharmacology , Ipilimumab/therapeutic use , Male , Melanoma/blood , Melanoma/drug therapy , Melanoma/mortality , Middle Aged , Nivolumab/pharmacology , Nivolumab/therapeutic use , Primary Cell Culture , Skin Neoplasms/blood , Skin Neoplasms/drug therapy , Skin Neoplasms/mortality , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
18.
Nat Biotechnol ; 36(12): 1152-1154, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30520863
19.
J Transl Med ; 16(1): 82, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29606147

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (anti-CTLA-4, anti-PD-1, or the combination) enhance anti-tumor immune responses, yielding durable clinical benefit in several cancer types, including melanoma. However, a subset of patients experience immune-related adverse events (irAEs), which can be severe and result in treatment termination. To date, no biomarker exists that can predict development of irAEs. METHODS: We hypothesized that pre-treatment antibody profiles identify a subset of patients who possess a sub-clinical autoimmune phenotype that predisposes them to develop severe irAEs following immune system disinhibition. Using a HuProt human proteome array, we profiled baseline antibody levels in sera from melanoma patients treated with anti-CTLA-4, anti-PD-1, or the combination, and used support vector machine models to identify pre-treatment antibody signatures that predict irAE development. RESULTS: We identified distinct pre-treatment serum antibody profiles associated with severe irAEs for each therapy group. Support vector machine classifier models identified antibody signatures that could effectively discriminate between toxicity groups with > 90% accuracy, sensitivity, and specificity. Pathway analyses revealed significant enrichment of antibody targets associated with immunity/autoimmunity, including TNFα signaling, toll-like receptor signaling and microRNA biogenesis. CONCLUSIONS: Our results provide the first evidence supporting a predisposition to develop severe irAEs upon immune system disinhibition, which requires further independent validation in a clinical trial setting.


Subject(s)
Antibodies, Neoplasm/blood , Immunotherapy/adverse effects , Melanoma/immunology , Melanoma/therapy , Aged , Female , Humans , Male , Melanoma/blood , Proteomics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...