Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(12): 5405-5418, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483317

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs), with significant health risks to humans and wildlife, bioaccumulate in plants. However, the mechanisms underlying plant uptake remain poorly understood. This study deployed transcriptomic analysis coupled with genetic and physiological studies using Arabidopsis to investigate how plants respond to perfluorooctanesulfonic acid (PFOS), a long-chain PFAS. We observed increased expressions of genes involved in plant uptake and transport of phosphorus, an essential plant nutrient, suggesting intertwined uptake and transport processes of phosphorus and PFOS. Furthermore, PFOS-altered response differed from the phosphorus deficiency response, disrupting phosphorus metabolism to increase phosphate transporter (PHT) transcript. Interestingly, pht1;2 and pht1;8 mutants showed reduced sensitivity to PFOS compared to that of the wild type, implying an important role of phosphate transporters in PFOS sensing. Furthermore, PFOS accumulated less in the shoots of the pht1;8 mutant, indicating the involvement of PHT1;8 protein in translocating PFOS from roots to shoots. Supplementing phosphate improved plant's tolerance to PFOS and reduced PFOS uptake, suggesting that manipulating the phosphate source in PFOS-contaminated soils may be a promising strategy for minimizing PFOS uptake by edible crops or promoting PFOS uptake during phytoremediation. This study highlighted the critical role of phosphate sensing and transport system in the uptake and translocation of PFOS in plants.


Subject(s)
Alkanesulfonic Acids , Arabidopsis , Fluorocarbons , Humans , Phosphates , Gene Regulatory Networks , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Phosphorus/metabolism , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism
2.
Metallomics ; 12(11): 1748-1764, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33047775

ABSTRACT

Regulation of mRNA abundance revealed a genetic program for plant leaf acclimation to iron (Fe) limitation. The transcript for SUFB, a key component of the plastid iron-sulfur (Fe-S) assembly pathway is down-regulated early after Fe deficiency, and prior to down-regulation of mRNAs encoding abundant chloroplast Fe containing proteins, which should economize the use of Fe. What controls this system is unclear. We utilized RNA-seq. aimed to identify differentially expressed transcripts that are co-regulated with SUFB after Fe deficiency in leaves. To distinguish if lack of Fe or lack of Fe-S cofactors and associated loss of enzymatic and photosynthetic activity trigger transcriptome reprogramming, WT plants on low Fe were compared with an inducible sufb-RNAi knockdown. Fe deficiency targeted a limited set of genes and predominantly affected transcripts for chloroplast localized proteins. A set of glutaredoxin transcripts was concertedly down-regulated early after Fe deficiency, however when these same genes were down-regulated by RNAi the effect on known chloroplast Fe deficiency marker proteins was minimal. In promoters of differentially expressed genes, binding motifs for AP2/ERF transcription factors were most abundant and three AP2/ERF transcription factors were also differentially expressed early after low Fe treatment. Surprisingly, Fe deficiency in a WT on low Fe and a sufb-RNAi knockdown presented very little overlap in differentially expressed genes. sufb-RNAi produced expression patterns expected for Fe excess and up-regulation of a transcript for another Fe-S assembly component not affected by low Fe. These findings indicate that Fe scarcity, not Fe utilization, triggers reprogramming of the transcriptome in leaves.


Subject(s)
Arabidopsis/genetics , Chloroplasts/metabolism , Iron Deficiencies , Iron-Sulfur Proteins/metabolism , Plant Leaves/genetics , Transcriptome/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Homeostasis , Phenotype , Plant Shoots/genetics , Promoter Regions, Genetic/genetics , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcription, Genetic
3.
Funct Plant Biol ; 47(12): 1041-1052, 2020 11.
Article in English | MEDLINE | ID: mdl-32571473

ABSTRACT

PAAI is a P-Type ATPase that functions to import copper (Cu) into the chloroplast. Arabidopsis thaliana (L.) Heynh. paa1 mutants have lowered plastocyanin levels, resulting in a decreased photosynthetic electron transport rate. In nature, iron (Fe) and Cu homeostasis are often linked and it can be envisioned that paa1 acclimates its photosynthetic machinery by adjusting expression of its chloroplast Fe-proteome, but outside of Cu homeostasis paa1 has not been studied. Here, we characterise paa1 ultrastructure and accumulation of electron transport chain proteins in a paa1 allelic series. Furthermore, using hydroponic growth conditions, we characterised metal homeostasis in paa1 with an emphasis on the effects of Fe deficiency. Surprisingly, the paa1 mutation does not affect chloroplast ultrastructure or the accumulation of other photosynthetic electron transport chain proteins, despite the strong decrease in electron transport rate. The regulation of Fe-related photosynthetic electron transport proteins in response to Fe status was maintained in paa1, suggesting that regulation of the chloroplast Fe proteins ignores operational signals from photosynthetic output. The characterisation of paa1 has revealed new insight into the regulation of expression of the photosynthetic electron transport chain proteins and chloroplast metal homeostasis and can help to develop new strategies for the detection of shoot Fe deficiency.


Subject(s)
Arabidopsis Proteins , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , Copper Transport Proteins , Homeostasis , Iron/metabolism , Micronutrients
4.
Int J Mol Sci ; 21(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403383

ABSTRACT

Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.


Subject(s)
Chloroplasts/metabolism , Homeostasis/physiology , Iron/metabolism , Photosynthesis/physiology , Acclimatization , Biological Evolution , Chlorophyta/metabolism , Cyanobacteria/metabolism , Electron Transport/physiology , Plants/metabolism
6.
Plant Physiol ; 176(1): 596-610, 2018 01.
Article in English | MEDLINE | ID: mdl-29150559

ABSTRACT

Iron (Fe) is an essential element for plants, utilized in nearly every cellular process. Because the adjustment of uptake under Fe limitation cannot satisfy all demands, plants need to acclimate their physiology and biochemistry, especially in their chloroplasts, which have a high demand for Fe. To investigate if a program exists for the utilization of Fe under deficiency, we analyzed how hydroponically grown Arabidopsis (Arabidopsis thaliana) adjusts its physiology and Fe protein composition in vegetative photosynthetic tissue during Fe deficiency. Fe deficiency first affected photosynthetic electron transport with concomitant reductions in carbon assimilation and biomass production when effects on respiration were not yet significant. Photosynthetic electron transport function and protein levels of Fe-dependent enzymes were fully recovered upon Fe resupply, indicating that the Fe depletion stress did not cause irreversible secondary damage. At the protein level, ferredoxin, the cytochrome-b6f complex, and Fe-containing enzymes of the plastid sulfur assimilation pathway were major targets of Fe deficiency, whereas other Fe-dependent functions were relatively less affected. In coordination, SufA and SufB, two proteins of the plastid Fe-sulfur cofactor assembly pathway, were also diminished early by Fe depletion. Iron depletion reduced mRNA levels for the majority of the affected proteins, indicating that loss of enzyme was not just due to lack of Fe cofactors. SufB and ferredoxin were early targets of transcript down-regulation. The data reveal a hierarchy for Fe utilization in photosynthetic tissue and indicate that a program is in place to acclimate to impending Fe deficiency.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Iron Deficiencies , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Carbon/metabolism , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Chloroplasts/radiation effects , Electron Transport/radiation effects , Gene Expression Regulation, Plant/radiation effects , Iron/metabolism , Light , Photosynthesis/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...