Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(11): 7280-7303, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37040336

ABSTRACT

Herein, we describe the identification, chemical optimization, and preclinical characterization of novel soluble guanylate cyclase (sGC) stimulators. Given the very broad therapeutic opportunities for sGC stimulators, new tailored molecules for distinct indications with specific pharmacokinetics, tissue distribution, and physicochemical properties will be required in the future. Here, we report the ultrahigh-throughput (uHTS)-based discovery of a new class of sGC stimulators from an imidazo[1,2-a]pyridine lead series. Through the extensive and staggered optimization of the initial screening hit, liabilities such as potency, metabolic stability, permeation, and solubility could be substantially improved in parallel. These efforts resulted ultimately in the discovery of the new sGC stimulators 22 and 28. It turned out that BAY 1165747 (BAY-747, 28) could be an ideal treatment alternative for patients with hypertension, especially those not responding to standard anti-hypertensive therapy (resistant hypertension). BAY-747 (28) demonstrated sustained hemodynamic effects up to 24 h in phase 1 studies.


Subject(s)
Guanylate Cyclase , Hypertension , Humans , Soluble Guanylyl Cyclase/metabolism , Guanylate Cyclase/metabolism , Hypertension/drug therapy , Vasodilator Agents , Pyridines/pharmacology , Pyridines/therapeutic use , Nitric Oxide/metabolism
2.
J Med Chem ; 60(12): 5146-5161, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28557445

ABSTRACT

The first-in-class soluble guanylate cyclase (sGC) stimulator riociguat was recently introduced as a novel treatment option for pulmonary hypertension. Despite its outstanding pharmacological profile, application of riociguat in other cardiovascular indications is limited by its short half-life, necessitating a three times daily dosing regimen. In our efforts to further optimize the compound class, we have uncovered interesting structure-activity relationships and were able to decrease oxidative metabolism significantly. These studies resulting in the discovery of once daily sGC stimulator vericiguat (compound 24, BAY 1021189), currently in phase 3 trials for chronic heart failure, are now reported.


Subject(s)
Heart Failure/drug therapy , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Soluble Guanylyl Cyclase/metabolism , Structure-Activity Relationship , Administration, Intravenous , Administration, Oral , Animals , Blood Pressure/drug effects , Chemistry Techniques, Synthetic , Dogs , Hepatocytes/drug effects , Heterocyclic Compounds, 2-Ring/administration & dosage , Humans , Male , NG-Nitroarginine Methyl Ester/adverse effects , Pyrimidines/administration & dosage , Rats, Transgenic , Rats, Wistar , Soluble Guanylyl Cyclase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...