Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nanoscale ; 12(16): 9067-9081, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32285065

ABSTRACT

AIII-BV semiconductors have been considered to be a promising material for decades in overcoming the limitations of silicon semiconductor devices. One of the important aspects within the AIII-BV semiconductor technology is gold-semiconductor interactions on the nanoscale. We report on the investigations into the basic chemical interactions of Au atoms with AIII-BV semiconductor crystals by the investigation of the nanostructure formation in the process of thermally-induced Au self-assembly on various AIII-BV surfaces by means of atomically resolved High Angle Annular Dark Field (HAADF) Scanning Transmission Electron Microscopy (STEM) measurements. We have found that the formation of nanostructures is a consequence of the surface diffusion and nucleation of adatoms produced by Au induced chemical reactions on AIII-BV semiconductor surfaces. Only for InSb crystals we have found that there is efficient diffusion of Au atoms into the bulk, which we experimentally studied by Machine Learning HAADF STEM image quantification and theoretically by Density Functional Theory (DFT) calculations with the inclusion of finite temperature effects. Furthermore, the effective number of Au atoms needed to release one AIII metal atom has been estimated. The experimental finding reveals a difference in the Au interactions with the In- and Ga-based groups of AIII-BV semiconductors. Our comprehensive and systematic studies uncover the details of the Au interactions with the AIII-BV surface at the atomic level with chemical sensitivity and shed new light on the fundamental Au/AIII-BV interactions at the atomic scale.

2.
Sci Rep ; 9(1): 12563, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31467321

ABSTRACT

We investigate the thermal reduction of TiO2 in ultra-high vacuum. Contrary to what is usually assumed, we observe that the maximal surface reduction occurs not during the heating, but during the cooling of the sample back to room temperature. We describe the self-reduction, which occurs as a result of differences in the energies of defect formation in the bulk and surface regions. The findings presented are based on X-ray photoelectron spectroscopy carried out in-operando during the heating and cooling steps. The presented conclusions, concerning the course of redox processes, are especially important when considering oxides for resistive switching and neuromorphic applications and also when describing the mechanisms related to the basics of operation of solid oxide fuel cells.

3.
J Phys Condens Matter ; 30(30): 304005, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29897344

ABSTRACT

Ion-beam sputtering of two-component substrates constitutes an alternative route for the nanofabrication of 3D (three-dimensional) structures, such as quantum dots or nanowires with unique properties like a high degree of local ordering. To allow for feasibility in precision manufacturing, control and optimization it is necessary to completely understand all the phenomena behind the evolution of nanostructures. The formation and development during the ion irradiation of similar features has been extensively studied for almost a half of century, but only over the last few years have new results appeared, ones stimulating real progress within this field. In this paper we report on the growth of such 3D nanostructures after low energy ion-beam sputtering on specific materials belonging to the group of AIII-BV binary compound crystals. Special emphasis is given to the role of sample temperature (during irradiation or post-annealing) on the evolution of nanostructure patterns and their ordering. The formation of such systems will be explained as seen from a phenomenological perspective.

4.
Nanoscale ; 10(24): 11498-11505, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29888770

ABSTRACT

The introduction of transition metal oxides for building nanodevices in information technology promises to overcome the scaling limits of conventional semiconductors and to reduce global power consumption significantly. However, oxide surfaces can exhibit heterogeneity on the nanoscale e.g. due to relaxation, rumpling, reconstruction, or chemical variations which demands for direct characterization of electronic transport phenomena down to the atomic level. Here we demonstrate that conductivity mapping is possible with true atomic resolution using the tip of a local conductivity atomic force microscope (LC-AFM) as the mobile nanoelectrode. The application to the prototypical transition metal oxide TiO2 self-doped by oxygen vacancies reveals the existence of highly confined current paths in the first stage of thermal reduction. Assisted by density functional theory (DFT) we propose that the presence of oxygen vacancies in the surface layer of such materials can introduce short range disturbances of the electronic structure with confinement of metallic states on the sub-nanometre scale. After prolonged reduction, the surfaces undergo reconstruction and the conductivity changes from spot-like to homogeneous as a result of surface transformation. The periodic arrangement of the reconstruction is clearly reflected in the conductivity maps as concluded from the simultaneous friction force and LC-AFM measurements. The second prototype metal oxide SrTiO3 also reveals a comparable transformation in surface conductivity from spot-like to homogeneous upon reduction showing the relevance of nanoscale inhomogeneities for the electronic transport properties and the utility of a high-resolution LC-AFM as a convenient tool to detect them.

5.
J Phys Condens Matter ; 30(28): 283001, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29790863

ABSTRACT

Control over organic thin film growth is a central issue in the development of organic electronics. The anisotropy and extended size of the molecular building blocks introduce a high degree of complexity within the formation of thin films. This complexity can be even increased for substrates with induced, sophisticated morphology and anisotropy. Thus, targeted structuring like ion beam mediated modification of substrates in order to create ripples, pyramids, or pit structures provides a further degree of freedom in manipulating the growth morphology of organic thin films. We provide a comprehensive review of recent work on para-hexaphenyl (C36H26, 6P) as a typical representative of the class of small, rod-like conjugated molecules and rutile TiO2(1 1 0) as an example for a transparent oxide electrode to demonstrate the effect of ion beam induced nanostructuring on organic thin film growth. Starting from molecular growth on smooth, atomically flat TiO2(1 1 0) (1 × 1) surfaces, we investigate the influence of the ripple size on the resulting 6P thin films. The achieved 6P morphologies are either crystalline nano-needles composed of flat lying molecules or islands consisting of upright standing 6P, which are elongated in ripple direction. The islands' length-to-width ratio can be controlled by tuning the ripples' shape.

6.
Nano Lett ; 17(11): 6520-6525, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29032683

ABSTRACT

The quantitative composition of metal alloy nanowires on InSb semiconductor surface and gold nanostructures on germanium surface is determined by blind source separation (BSS) machine learning method using non-negative matrix factorization from energy dispersive X-ray spectroscopy (EDX) spectrum image maps measured in a scanning electron microscope (SEM). The BSS method blindly decomposes the collected EDX spectrum image into three source components, which correspond directly to the X-ray signals coming from the supported metal nanostructures, bulk semiconductor signal, and carbon background. The recovered quantitative composition is validated by detailed Monte Carlo simulations and is confirmed by separate cross-sectional transmission electron microscopy EDX measurements of the nanostructures. This shows that simple and achievable SEM EDX measurements together with machine learning non-negative matrix factorization-based blind source separation processing could be successfully used for the nanostructures quantitative chemical composition determination. Our finding can make the chemical quantification at the nanoscale much faster and cost efficient for many systems.

7.
Phys Chem Chem Phys ; 19(45): 30339-30350, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-28936525

ABSTRACT

We report on the systematic exploration of electronic and structural changes of Nb-doped rutile TiO2(110) single crystal surfaces due to the thermoreduction under ultra-high vacuum conditions (without sputtering), with comparison to undoped TiO2(110) crystals. It has been found that the surface of the doped sample undergoes a previously unknown transition during reduction above 850 °C, as provided by LEED, STM and LC-AFM. This transition involves a change from heterogeneous conductivity (due to the presence of conducting filaments) to homogeneous conductivity, connected with a new (4 × 2) reconstruction of rows parallel to the [001] direction. DFT calculations suggest substitution of Ti by Nb atoms in the first atomic layer. Due to the strong reducing conditions during annealing, oxygen is released from the crystal and Nb diffuses from the subsurface into the bulk, agglomerating however on the surface, as shown by SIMS depth profiling. We present that 0.5% Nb doping significantly influences the reduction process and in turn the structural properties of the surface by supporting the evolution of the new reconstruction. It is shown that the thermal treatment of TiO2:Nb under low oxygen partial pressure gives an opportunity to tune the electrical conductivity and work function of the surface.

8.
Sci Rep ; 7: 42420, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28195226

ABSTRACT

Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.

9.
J Chem Phys ; 145(14): 144703, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27782523

ABSTRACT

We have investigated the growth and stability of molecular ultra-thin films, consisting of rod-like semiconducting para-hexaphenyl (6P) molecules vapor deposited on ion beam modified TiO2(110) surfaces. The ion bombarded TiO2(110) surfaces served as growth templates exhibiting nm-scale anisotropic ripple patterns with controllable parameters, like ripple depth and length. In turn, by varying the ripple depth one can tailor the average local slope angle and the local step density/terrace width of the stepped surface. Here, we distinguish three types of substrates: shallow, medium, and deep rippled surfaces. On these substrates, 6P sub-monolayer deposition was carried out in ultra-high vacuum by organic molecular beam evaporation (OMBE) at room temperature leading to the formation of islands consisting of upright standing 6P molecules, which could be imaged by scanning electron microscopy and atomic force microscopy (AFM). It has been found that the local slope and terrace width of the TiO2 template strongly influences the stability of OMBE deposited 6P islands formed on the differently rippled substrates. This effect is demonstrated by means of tapping mode AFM, where an oscillating tip was used as a probe for testing the stability of the organic structures. We conclude that by increasing the local slope of the TiO2(110) surface the bonding strength between the nearest neighbor standing molecules is weakened due to the presence of vertical displacement in the molecular layer in correspondence to the TiO2 atomic step height.

10.
Data Brief ; 8: 1322-32, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27570811

ABSTRACT

Data included in this article are associated with the research article entitled 'Protocol of single cells preparation for time-of-flight secondary ion mass spectrometry' (Bobrowska et al., 2016 in press) [1]. This data file contains topography images of single melanoma cells recorded using atomic force microscopy (AFM). Single cells cultured on glass surface were subjected to the proposed sample preparation protocol applied to prepare biological samples for time-of-flight secondary ion mass spectrometry (ToF SIMS) measurements. AFM images were collected step-by-step for the single cell, after each step of the proposed preparation protocol. It consists of four main parts: (i) paraformaldehyde fixation, (ii) salt removal, (iii) dehydrating, and (iv) sample drying. In total 13 steps are required, starting from imaging of a living cell in a culture medium and ending up at images of a dried cell in the air. The protocol was applied to melanoma cells from two cell lines, namely, WM115 melanoma cells originated from primary melanoma site and WM266-4 ones being the metastasis of WM115 cells to skin.

11.
J Phys Condens Matter ; 25(45): 454207, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24141081

ABSTRACT

Reverse Monte Carlo (RMC) modelling of neutron total scattering data, combined with conventional Rietveld analysis of x-ray and neutron data, has been used to describe the cation coordination environments and vacancy pair distribution in the oxide ion conducting electrolyte Bi3YbO6. The thermal variation of the cubic fluorite unit cell volume, monitored by variable temperature x-ray and neutron experiments, reveals significant curvature, which is explained by changes in the oxide ion distribution. There is a significant increase in tetrahedral oxide ion vacancy concentration relative to δ-Bi2O3, due to the creation of Frenkel defects associated with the Yb(3+) cation. The tetrahedral oxide ion vacancy concentration increases from room temperature to 800 °C, but little change is observed in the vacancy pair distribution with temperature. The vacancy pair distributions at both temperatures are consistent with a favouring of [100] vacancy pairs.


Subject(s)
Bismuth/chemistry , Neutron Diffraction , Ytterbium/chemistry , Monte Carlo Method , Temperature
12.
J Phys Condens Matter ; 24(4): 045904, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22214934

ABSTRACT

A study of phase and electrical behaviour in the bismuth niobate, Bi(4)NbO(8.5), using x-ray and neutron powder diffraction, thermogravimetric analysis (TGA), x-ray photoelectron spectroscopy (XPS) and ac impedance spectroscopy is presented. Two polymorphs were identified in this composition, a tetragonal phase (type III), which can appear at temperatures above 800 °C and a pseudo-cubic phase (type II) evident at lower temperatures. The defect structure analysis of the type II phase is consistent with the existence of chains of niobate polyhedra, which facilitate electronic conduction at low temperatures. The appearance of the type III phase is strongly dependent on experimental conditions and TGA and XPS measurements suggest a likely association with change in oxygen stoichiometry.


Subject(s)
Bismuth/chemistry , Electric Conductivity , Niobium/chemistry , Dielectric Spectroscopy , Neutron Diffraction , Photoelectron Spectroscopy , Temperature , Thermogravimetry , X-Ray Diffraction
13.
Nanotechnology ; 18(13): 135302, 2007 Apr 04.
Article in English | MEDLINE | ID: mdl-21730376

ABSTRACT

PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) molecular structures assembled on an InSb(001) c(8 × 2) reconstructed surface have been studied using frequency modulated atomic force microscopy. The high-resolution imaging of the structures is possible through repulsive interactions, using the constant height scanning mode. During initial stages of growth the [110] diffusion channel dominates as indicated by formation of long PTCDA molecular chains parallel to the [110] crystallographic direction on the InSb surface. For a single monolayer coverage a wetting layer of PTCDA is formed. Finally it is shown that the PTCDA/InSb is a promising system for building molecular nanostructures by manipulation of single molecules with the AFM tip.

14.
Int J Biol Macromol ; 33(1-3): 1-7, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14599577

ABSTRACT

Surface studies at ambient conditions of potato starch granules subjected to multiple freezing and thawing, performed by a high resolution non-contact atomic force microscopy (nc-AFM), revealed some details of the starch granule nanostructure. After the treatment, a significant separation and a chain-like organisation of the granule surface elements have been observed. An accurate analysis of the granule surface nanostructure with a single amylopectine cluster resolution could be carried out. The oblong nodules of approximately 20-50 nm in diameter have been observed at the surface of the potato starch granules. The same size particles were precipitated by ethanol from gelatinized potato starch suspensions. They were also detected at the surface of oat and wheat starch granules. After multiple freezing and thawing, the eroded potato granule surface revealed a lamellar structure of its interior. The 30-40 nm inter-lamellar distances were estimated by means of nc-AFM. These findings fit previously proposed dimensions of the structural elements in the crystalline region of the starch granule. The observed surface sub-particles might correspond to the single amylopectine side chain clusters bundled into larger blocklets packed in the lamellae within the starch granule. The results supported the blocklet model of the starch granule structure.


Subject(s)
Microscopy, Atomic Force/methods , Solanum tuberosum/chemistry , Starch/ultrastructure , Chemical Precipitation , Ethanol/chemistry , Image Processing, Computer-Assisted , Nanotechnology/methods , Particle Size
15.
Phys Rev Lett ; 90(22): 226101, 2003 Jun 06.
Article in English | MEDLINE | ID: mdl-12857322

ABSTRACT

Noncontact atomic force microscopy (NC-AFM) has been used to study the c(8x2) InSb(001) and the c(8x2) GaAs(001) surfaces prepared by sputter cleaning and annealing. Atomically resolved tip-surface interaction maps display different characteristic patterns depending on the tip front atom type. It is shown that representative AFM maps can be interpreted consistently with the most recent structural model of A(III)B(V)(001) surface, as corresponding to the A(III) sublattice, to the B(V) sublattice, or to the combination of both sublattices.

16.
Phys Rev Lett ; 85(12): 2621-4, 2000 Sep 18.
Article in English | MEDLINE | ID: mdl-10978122

ABSTRACT

Electron-stimulated desorption of the (100)KBr surface has been investigated in vacuum with noncontact atomic force microscopy and mass spectroscopy. It has been found that both desorption components (K and Br) show oscillatory dependence on the electron dose with the oscillation amplitude decaying gradually. These results correspond with periodically varying, as a result of a layer-by-layer desorption, surface topography. It is proposed that the surface terrace edges act as traps for excited F centers diffusing in the crystal. The oscillating density of terrace edges varies surface recombination/reflection rates for the F centers and modulates the balance between surface and bulk deexcitation of the crystal.

17.
Int J Biol Macromol ; 27(4): 307-14, 2000 Jul 12.
Article in English | MEDLINE | ID: mdl-10921858

ABSTRACT

Samples of oven-dried, air-dried, and moisturised potato starch (5, 13, and 24% w/w moisture content, respectively) were frozen in liquid nitrogen. Samples after thawing were studied by means of cross-polarised light beam microscope (CLBM), Fourier Transformation Infrared Spectroscope (FT-IR), powder X-ray diffractometer, and non-contact Atomic Force Microscope (nc-AFM). Rapid deep-freezing followed by thawing produced changes on the granule surface. They were accompanied by internal alteration manifested by FT-IR spectra and powder X-ray diffractograms. The results depended on the water content in the sample. Deep-freezing of moistened starch resulted in increased crystallinity of granules. It had minor effect on the granule aqueous solubility and characteristics of gelation.


Subject(s)
Freezing , Solanum tuberosum/chemistry , Starch/chemistry , Crystallization , Microscopy, Atomic Force , Microscopy, Polarization , Solanum tuberosum/ultrastructure , Spectroscopy, Fourier Transform Infrared , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...