Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 828: 153944, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35192826

ABSTRACT

All nuclear energy producing nations face a common challenge associated with the long-term solution for their used nuclear fuel. After decades of research, many nuclear safety agencies worldwide agree that deep geological repositories (DGRs) are appropriate long-term solutions to protect the biosphere. The Canadian DGR is planned in either stable crystalline or sedimentary host rock (depending on the final site location) to house the used nuclear fuel in copper-coated used fuel containers (UFCs) surrounded by highly compacted bentonite. The copper-coating and bentonite provide robust protection against many corrosion processes anticipated in the DGR. However, it is possible that bisulfide (HS-) produced near the host rock-bentonite interface may transport through the bentonite and corrode the UFCs during the DGR design life (i.e., one million years); although container performance assessments typically account for this process, while maintaining container integrity. Because the DGR design life far exceeds those of practical experimentation, there is a need for robust numerical models to forecast HS- transport. In this paper we present the development of a coupled 3D thermal-hydraulic-chemical model to explore the impact of key coupled physics on HS- transport in the proposed Canadian DGR. These simulations reveal that, although saturation delayed and heating accelerated HS- transport over the first 100s and 10,000s of years, respectively, these times of influence were small compared to the long DGR design life. Consequently, the influence from heating only increased total projected HS- corrosion by <20% and the influence from saturation had a negligible impact (<1%). By comparing the corrosion rate results with a simplified model, it was shown that nearly-steady DGR design parameters governed most of the projected HS- corrosion. Therefore, those parameters need to be carefully resolved to reliably forecast the extent of HS- corrosion.


Subject(s)
Caustics , Radioactive Waste , Bentonite , Canada , Copper , Radioactive Waste/analysis
2.
J Contam Hydrol ; 243: 103870, 2021 12.
Article in English | MEDLINE | ID: mdl-34418819

ABSTRACT

Subsurface remediation using nanoscale zero valent iron (nZVI) is a promising in-situ technology that can transform certain groundwater contaminants into non-toxic compounds. However, field scale implementation of nZVI technology has faced major challenges due to poor subsurface mobility, limited longevity and well clogging, all leading to a shorter nZVI travel distance. This distance nZVI travels in the subsurface is an important parameter since it influences the amount of contaminants that can be reached and thereby remediated. There are several factors which may affect nZVI travel distance such as groundwater velocity, injection concentration and rate, lag period (duration when nZVI injection is stopped), solution viscosity, and subsurface heterogeneity. Although various studies have been performed to reveal the effect of different factors on nZVI transport in homogeneous domains, few studies have focused on heterogeneous media, which is more representative of field conditions. In this study, a statistical analysis was performed using a two-dimensional numerical model which simulated carboxymethyl cellulose (CMC) stabilized nZVI transport in randomly distributed soil permeability fields of two aquifers to examine the factors that have the greatest impact on nZVI travel distance. Among all possible factors, field scale solution viscosity and injection rate had a statistically significant effect on nZVI travel distance in both the horizontal and vertical directions, as well as, on the attached mass. Additionally, the lag period between injections had a statistically significant effect on the attached mass, but not the travel distance. These results suggest that having a long injection period followed by a short lag phase during field deployment may result in less nZVI attachment. Lastly, aquifer heterogeneity impacted the nZVI spread while the impact of intrinsic groundwater velocity and injection concentration was found not to be statistically significant. Results from this numerical study can aid in field-scale CMC-nZVI injection by identifying key factors for remediation optimization.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Metal Nanoparticles , Carboxymethylcellulose Sodium , Groundwater/analysis , Iron/analysis , Metal Nanoparticles/analysis , Soil
3.
Sci Total Environ ; 778: 146235, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33721653

ABSTRACT

Geothermal or ground source heat pumps (GSHPs) are among the highest growing renewable energy technologies used for heating and cooling of buildings. However, despite being a well-established technology, their geo-environmental effects such as impact of the heat on the biosphere is still not thoroughly understood. This study uses FEFLOW software, to simulate heat and mass transport of a vertical closed-loop GSHP system. Transient flow and heat transport results for a multiple borehole system are presented which indicate long-term effects on subsurface temperature. Moreover, the impact of temperature change in a contaminated granular porous subsurface during remediation applications is examined. In particular, as subsurface temperatures are elevated due to geothermal heating, sorption will decrease and biodegradation rates will increase. These effects are examined in the context of contaminant transport, to evaluate the possibility of utilizing geothermal heating as a remediation strategy. The results revealed that temperature changes caused by GSHP operation can significantly enhance biodegradation of hydrocarbon contaminants. For instance, elevated subsurface temperature resulted in 97% reduction in benzene total mass, after one year of GSHP operation for a typical office building in Toronto.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Hot Temperature , Hydrocarbons , Technology , Toluene , Water Pollutants, Chemical/analysis
4.
J Contam Hydrol ; 212: 65-77, 2018 05.
Article in English | MEDLINE | ID: mdl-29223368

ABSTRACT

This study presents a set of laboratory-scale transport experiments and numerical simulations evaluating carboxymethyl cellulose (CMC) polymer stabilized nano-scale zero-valent iron (nZVI) transport. The experiments, performed in a glass-walled two-dimensional (2D) porous medium system, were conducted to identify the effects of water specific discharge and CMC concentration on nZVI transport and to produce data for model validation. The transport and movement of a tracer lissamine green B® (LGB) dye, CMC, and CMC-nZVI were evaluated through analysis of the breakthrough curves (BTCs) at the outlets, the time-lapsed images of the plume, and retained nZVI in the sandbox. The CMC mass recovery was >95% when injected alone and about 65% when the CMC-nZVI mixture was used. However, the mean residence time of CMC was significantly higher than that of LGB. Of significance for field implementation, viscous fingering was observed in water displacement of previously injected CMC and CMC-nZVI. The mass recovery of nZVI was lower (<50%) than CMC recovery due to attachment onto sand grain surfaces. Consecutive CMC-nZVI injections showed higher nZVI recovery in the second injection, a factor to be considered in field trials with successive CMC-nZVI injections. Transport of LGB, CMC, and nZVI were modeled using a flow and transport model considering LGB and CMC as solutes, and nZVI as a colloid, with variable solution viscosity due to changes in CMC concentrations. The simulation results matched the experimental observations and provided estimates of transport parameters, including attachment efficiency, that can be used to predict CMC stabilized nZVI transport in similar porous media, although the extent of viscous fingering may be underpredicted. The experimental and simulation results indicated that increasing specific discharge had a greater effect on decreasing CMC-nZVI attachment efficiency (corresponding to greater possible travel distances in the field) than increasing CMC concentration.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Metal Nanoparticles/chemistry , Colloids , Iron/chemistry , Metal Nanoparticles/analysis , Polymers/chemistry , Porosity , Silicon Dioxide , Viscosity , Water
5.
J Contam Hydrol ; 183: 16-28, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26496622

ABSTRACT

Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI field-scale mobility. In this study, a field test was combined with numerical modeling to examine nZVI reactivity along with transport properties in variably saturated soils. The field test consisted of 142L of carboxymethyle cellulose (CMC) stabilized monometallic nZVI synthesized onsite and injected into a variably saturated zone. Periodic groundwater samples were collected from the injection well, as well as, from two monitoring wells to analyze for chlorinated solvents and other geochemistry indicators. This study showed that CMC stabilized monometallic nZVI was able to decrease tricholorethene (TCE) concentrations in groundwater by more than 99% from the historical TCE concentrations. A three dimensional, three phase, finite difference numerical simulator, (CompSim) was used to further investigate nZVI and polymer transport at the variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the mass of nZVI delivered to the saturated and unsaturated zones and distinguished the nZVI phase (i.e. aqueous or attached). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity and viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher nZVI volume delivered more iron particles at a given distance; however, the travel distance was not proportional to the increase in volume. Moreover, simulation results showed that using a 1D transport equation to simulate nZVI migration in the subsurface may overestimate the travel distance. This is because the 1D transport equation assumes a constant velocity while pore water velocity radially decreases from the well during injection. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and that a numerical simulator can be a valuable tool for optimal design of nZVI field applications.


Subject(s)
Environmental Restoration and Remediation/methods , Iron , Metal Nanoparticles , Water Pollutants, Chemical/analysis , Carboxymethylcellulose Sodium/chemistry , Computer Simulation , Groundwater/analysis , Iron/chemistry , Metal Nanoparticles/chemistry , Models, Theoretical , Ontario , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Trichloroethanes/analysis , Trichloroethanes/chemistry , Viscosity , Water Wells
6.
Sci Total Environ ; 499: 7-17, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25173857

ABSTRACT

The occurrence of subsurface buoyant flow during thermal remediation was investigated using a two dimensional electro-thermal model (ETM). The model incorporated electrical current flow associated with electrical resistance heating, energy and mass transport, and density dependent water flow. The model was used to examine the effects of heating on sixteen subsurface scenarios with different applied groundwater fluxes and soil permeabilities. The results were analyzed in terms of the ratio of Rayleigh to thermal Peclet numbers (the buoyancy ratio). It was found that when the buoyancy number was greater than unity and the soil permeability greater than 10(-12) m(2), buoyant flow and contaminant transport were significant. The effects of low permeability layers and electrode placement on heat and mass transport were also investigated. Heating under a clay layer led to flow stagnation zones resulting in the accumulation of contaminant mass and transport into the low permeability layer. The results of this study can be used to develop dimensionless number-based guidelines for site management during subsurface thermal activities.


Subject(s)
Models, Chemical , Soil Pollutants/chemistry , Convection , Groundwater/chemistry , Heating , Porosity , Soil/chemistry , Soil Pollutants/analysis
7.
Environ Sci Technol ; 48(5): 2862-9, 2014.
Article in English | MEDLINE | ID: mdl-24479900

ABSTRACT

Nanoscale zerovalent iron (nZVI) particles were injected into a contaminated sandy subsurface area in Sarnia, Ontario. The nZVI was synthesized on site, creating a slurry of 1 g/L nanoparticles using the chemical precipitation method with sodium borohydride (NaBH4) as the reductant in the presence of 0.8% wt. sodium carboxymethylcellulose (CMC) polymer to form a stable suspension. Individual nZVI particles formed during synthesis had a transmission electron microscopy (TEM) quantified particle size of 86.0 nm and dynamic light scattering (DLS) quantified hydrodynamic diameter for the CMC and nZVI of 624.8 nm. The nZVI was delivered to the subsurface via gravity injection. Peak normalized total Fe breakthrough of 71% was observed 1m from the injection well and remained above 50% for the 24 h injection period. Samples collected from a monitoring well 1 m from the injection contained nanoparticles with TEM-measured particle diameter of 80.2 nm and hydrodynamic diameter of 562.9 nm. No morphological changes were discernible between the injected nanoparticles and nanoparticles recovered from the monitoring well. Energy dispersive X-ray spectroscopy (EDS) was used to confirm the elemental composition of the iron nanoparticles sampled from the downstream monitoring well, verifying the successful transport of nZVI particles. This study suggests that CMC stabilized nZVI can be transported at least 1 m to the contaminated source zone at significant Fe(0) concentrations for reaction with target contaminants.


Subject(s)
Iron/chemistry , Metal Nanoparticles/chemistry , Carboxymethylcellulose Sodium/chemistry , Soil Pollutants/chemistry , Time and Motion Studies , Water Purification/methods
8.
Environ Sci Technol ; 47(13): 7332-40, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23725414

ABSTRACT

Nanoscale zerovalent iron (nZVI) particles have significant potential to remediate contaminated source zones. However, the transport of these particles through porous media is not well understood, especially at the field scale. This paper describes the simulation of a field injection of carboxylmethyl cellulose (CMC) stabilized nZVI using a 3D compositional simulator, modified to include colloidal filtration theory (CFT). The model includes composition dependent viscosity and spatially and temporally variable velocity, appropriate for the simulation of push-pull tests (PPTs) with CMC stabilized nZVI. Using only attachment efficiency as a fitting parameter, model results were in good agreement with field observations when spatially variable viscosity effects on collision efficiency were included in the transport modeling. This implies that CFT-modified transport equations can be used to simulate stabilized nZVI field transport. Model results show that an increase in solution viscosity, resulting from injection of CMC stabilized nZVI suspension, affects nZVI mobility by decreasing attachment as well as changing the hydraulics of the system. This effect is especially noticeable with intermittent pumping during PPTs. Results from this study suggest that careful consideration of nZVI suspension formulation is important for optimal delivery of nZVI which can be facilitated with the use of a compositional simulator.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Groundwater/chemistry , Iron/chemistry , Models, Theoretical , Environmental Restoration and Remediation , Reproducibility of Results , Viscosity , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...