Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 3): 182-192, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38728046

ABSTRACT

SnGe4N4O4 was synthesized at high pressure (16 and 20 GPa) and high temperature (1200 and 1500°C) in a large-volume press. Powder X-ray diffraction experiments using synchrotron radiation indicate that the derived samples are mixtures of known and unknown phases. However, the powder X-ray diffraction patterns are not sufficient for structural characterization. Transmission electron microscopy studies reveal crystals of several hundreds of nanometres in size with different chemical composition. Among them, crystals of a previously unknown phase with stoichiometry SnGe4N4O4 were detected and investigated using automated diffraction tomography (ADT), a three-dimensional electron diffraction method. Via ADT, the crystal structure could be determined from single nanocrystals in space group P63mc, exhibiting a nolanite-type structure. This was confirmed by density functional theory calculations and atomic resolution scanning transmission electron microscopy images. In one of the syntheses runs a rhombohedral 6R polytype of SnGe4N4O4 could be found together with the nolanite-type SnGe4N4O4. The structure of this polymorph was solved as well using ADT.

2.
J Org Chem ; 88(17): 12853-12856, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37610134

ABSTRACT

2-(Methylthio)-1,3-dithioles are important heterocyclic compounds used for the preparation of redox-active derivatives of tetrathiafulvalene as they serve as precursors for phosphonate esters that can be employed in Horner-Wadsworth-Emmons olefination reactions. Here, we present a mild and less hazardous method than previous methods for converting readily accessible 1,3-dithiole-2-thiones into 2-(methylthio)-1,3-dithioles by methylation with trimethyl orthoformate and HBF4·Et2O and a subsequent reduction with NaBH4.

3.
Mol Pharm ; 20(2): 1296-1306, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36565283

ABSTRACT

Up to 90% of all newly developed active pharmaceutical ingredients (APIs) are poorly water soluble, most likely also showing a low oral bioavailability. In order to increase the aqueous solubility of these APIs, surfactants are promising excipients to increase both solubility and consequently bioavailability (e.g., in lipid- and surfactant-based drug delivery systems). In this work, we investigated the influence of hydrophobic and hydrophilic chain lengths of CiEj surfactants (C8E6, C10E6, and C10E8) toward the solubilization of fenofibrate, naproxen, and lidocaine. Furthermore, we investigated the partitioning of these APIs between the surfactant aggregates and the surrounding aqueous bulk phase. For all APIs considered, we determined the locus of API solubilization as well as the individual aggregation numbers (Nagg) of surfactants and API molecules in an API/surfactant aggregate. We further determined the hydrodynamic radius (Rh) of the API/surfactant aggregates in the absence and presence of the APIs. The size of the API/surfactant aggregates (Nagg, Rh) passes through a minimum upon lidocaine solubilization; it gradually increases upon naproxen solubilization and is almost constant upon fenofibrate solubilization. The results give valuable insights into the solubilization mechanisms of APIs in the CiEj surfactant aggregates. Our results reveal that fenofibrate is solely solubilized in the hydrophobic core of the CiEj surfactant aggregates, as only the hydrophobic chain length of the surfactant influences its solubilization. Naproxen is solubilized in the palisade layer of the surfactant aggregates, as both the hydrophobic and hydrophilic chain lengths are decisive for its solubilization. Lidocaine is mainly solubilized in the rather hydrophilic corona region of the surfactant aggregates, as the hydrophilic chain length of the surfactant governs its solubilization. The results further reveal that the hydrophilic/lipophilic balance is not an appropriate measure to estimate the solubilization capacity of surfactant aggregates.


Subject(s)
Fenofibrate , Surface-Active Agents , Surface-Active Agents/chemistry , Fenofibrate/chemistry , Naproxen , Excipients/chemistry , Micelles , Solubility , Water
4.
Langmuir ; 38(32): 10022-10031, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35926216

ABSTRACT

Hydroformylation of olefins to aldehydes and subsequent reductive amination of aldehydes to amines takes place in an aqueous system using a water-soluble catalyst. It is limited to short-chain molecules due to an insufficient solubility of long-chain molecules in water. A promising approach to increase the solubility of long-chain aldehydes and amines is the addition of surfactants to the aqueous phase. In this work, we thus determined the solubilization capacity (SC) of different nonionic CiEj surfactants (C8E6, C10E6, and C10E8) toward long-chain aldehydes and amines. We used static and dynamic light scattering techniques to investigate the influence of both the surfactant and solute molecular structures on the SC as well as on the aggregation number (Nagg) and hydrodynamic radius (Rh) of mixed aggregates. Our data reveals that an optimum ratio of hydrophobic to hydrophilic chain length of CiEj surfactants exists where the SC toward long-chain aldehydes and amines possesses a maximum. Further, the size of the aggregates (Nagg, Rh) passes through a minimum upon amine solubilization, while upon aldehyde solubilization, the aggregate size increases gradually. The results shown in this work give valuable insights to the solubilization of aldehydes and n-amines into nonionic CiEj surfactants and facilitate the search of suitable surfactants for hydroformylation and reductive amination as "green" solvents based on the detailed knowledge about the aggregate structure.

5.
ACS Omega ; 7(8): 7057-7065, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252696

ABSTRACT

Nonionic poly(ethylene oxide) alkyl ether (CiEj) surfactants self-assemble into aggregates of various sizes and shapes above their critical micelle concentration (CMC). Knowledge on solution attributes such as CMC as well as aggregate characteristics is crucial to choose the appropriate surfactant for a given application, e.g., as a micellar solvent system. In this work, we used static and dynamic light scattering to measure the CMC, aggregation number (N agg), and hydrodynamic radius (R h) of four different CiEj surfactants (C8E5, C8E6, C10E6, and C10E8). We examined the influence of temperature, concentration, and molecular structure on the self-assembly in the vicinity of the CMC. A minimum in the CMC vs temperature curve was identified for all surfactants investigated. Further, extending the hydrophilic and hydrophobic chain lengths leads to an increase and decrease of the CMC, respectively. The size of the aggregates strongly depends on temperature. N agg and R h increase with increasing temperature for all surfactants investigated. Additionally, N agg and R h both increase with increasing surfactant concentration. The data obtained in this work further improve the understanding of the influence of temperature and molecular structure on the self-assembly of CiEj surfactants and will further foster their use in micellar solvent systems.

6.
Phys Chem Chem Phys ; 23(9): 5422-5430, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33646208

ABSTRACT

We perform Differential Hysteresis Scanning (DHS) Porosimetry of amorphous silicon oxycarbide aerogels to quantify hierarchical connectivity in these porous materials. We contrast high-resolution argon sorption scanning isotherms of samples obtained through a non-templated synthesis using different solvents, and characterize respective changes after calcination at 1000 °C. The multi-scan DHS data sets are analyzed through non-negative least-squares deconvolution using a kernel of theoretically derived isotherms for a selection of hierarchical geometries using non-local density functional theory (NL-DFT). We obtain two-dimensional contour plots that characterize mesopores according to the ratio between pore diameter and its connecting window. Combined information from DHS and complementary BET and BJH approaches reveals one system with monomodal distribution both in pore diameters and in window diameters. Hence, this amorphous material exhibits a uniformity usually only observed for crystalline systems. We demonstrate that DHS analysis provides quantitative data analyzing the hierarchical structure of mesoporous materials and unlocks pathways towards tailored materials with control of surface heterogeneity, localization, and sequential accessibility - even for amorphous systems.

7.
Int J Pharm ; 595: 120266, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33486017

ABSTRACT

Partitioning tests in water are early-stage standard experiments during the development of pharmaceutical formulations, e.g. of lipid-based drug delivery system (LBDDS). The partitioning behavior of the active pharmaceutical ingredient (API) between the fatty phase and the aqueous phase is a key property, which is supposed to be determined by those tests. In this work, we investigated the API partitioning between LBDDS and water by in-silico predictions applying the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) and validated these predictions experimentally. The API partitioning was investigated for LBDDS comprising up to four components (cinnarizine or ibuprofen with tricaprylin, caprylic acid, and ethanol). The influence of LBDDS/water mixing ratios from 1/1 up to 1/200 (w/w) as well as the influence of excipients on the API partitioning was studied. Moreover, possible API crystallization upon mixing the LBDDS with water was predicted. This work showed that PC-SAFT is a strong tool for predicting the API partitioning behavior during in-vitro tests. Thus, it allows rapidly assessing whether or not a specific LBDDS might be a promising candidate for further in-vitro tests and identifying the API load up to which API crystallization can be avoided.


Subject(s)
Lipids/chemistry , Pharmaceutical Preparations/chemistry , Water/chemistry , Caprylates/chemistry , Chemistry, Pharmaceutical/methods , Cinnarizine/chemistry , Crystallization , Drug Compounding , Drug Delivery Systems , Ethanol/chemistry , Excipients/chemistry , Ibuprofen/chemistry , Solubility , Thermodynamics , Triglycerides/chemistry
8.
Small ; 16(38): e2002780, 2020 09.
Article in English | MEDLINE | ID: mdl-32812362

ABSTRACT

Many new technologies, such as cancer microenvironment-induced nanoparticle targeting and multivalent ligand approach for cell surface receptors, are developed for active targeting in cancer therapy. While the principle of each technology is well illustrated, most systems suffer from low targeting specificity and sensitivity. To fill the gap, this work demonstrates a successful attempt to combine both technologies to simultaneously improve cancer cell targeting sensitivity and specificity. Specifically, the main component is a targeting ligand conjugated self-assembling monomer precursor (SAM-P), which, at the tumor site, undergoes tumor-triggered cleavage to release the active form of self-assembling monomer capable of forming supramolecular nanostructures. Biophysical characterization confirms the chemical and physical transformation of SAM-P from unimers or oligomers with low ligand valency to supramolecular assemblies with high ligand valency under a tumor-mimicking reductive microenvironment. The in vitro fluorescence assay shows the importance of supramolecular morphology in mediating ligand-receptor interactions and targeting sensitivity. Enhanced targeting specificity and sensitivity can be achieved via tumor-triggered supramolecular assembly and induces multivalent ligand presentation toward cell surface receptors, respectively. The results support this combined tumor microenvironment-induced cell targeting and multivalent ligand display approach, and have great potential for use as cell-specific molecular imaging and therapeutic agents with high sensitivity and specificity.


Subject(s)
Nanofibers , Nanoparticles , Neoplasms , Humans , Ligands , Peptides , Tumor Microenvironment
9.
Sci Rep ; 10(1): 7372, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32355306

ABSTRACT

Here we report on the discovery of a ternary silicon titanium nitride with the general composition (Si1-x,Tix)3N4 with x = 0 < x < 1 and spinel-type crystal structure. The novel nitride is formed from an amorphous silicon titanium nitride (SiTiN) precursor under high-pressure/high-temperature conditions in a large volume high-pressure device. Under the conditions of 15-20 GPa and 1800-2000 °C, spinel-type γ-Si3N4 and rock salt-type c-TiN are formed. In addition, crystals of the discovered nano-sized ternary phase (Si1-x,Tix)3N4 embedded in γ-Si3N4 are identified. The ternary compound is formed due to kinetically-controlled synthesis conditions and is analyzed to exhibit the spinel-type structure with ca. 8 atom% of Ti. The Ti atoms occur in both Ti3+ and Ti4+ oxidation states and are located on the Si sites. The ternary nano-crystals have to be described as (Si,Ti)3N4 with N-vacancies resulting in the general composition (Si4+1-x Ti4+x-δTi3+δ)3N4-δ.

10.
Appl Spectrosc ; 74(1): 72-80, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31517520

ABSTRACT

The advent of a new vacuum ultraviolet (VUV) spectroscopic absorption detector for gas chromatography has enabled applications in many areas. Theoretical simulations of VUV spectra using computational chemistry can aid the new technique in situations where experimental spectra are unavailable. In this study, VUV spectral simulations of paraffin, isoparaffin, olefin, naphthene, and aromatic (PIONA) compounds using time-dependent density functional theory (TDDFT) methods were investigated. Important factors for the simulations, such as functionals/basis sets and formalism of oscillator strength calculations, were examined and parameters for future PIONA compound simulations were obtained by fitting computational results to experimental spectra. The simulations produced satisfactory correlations between experimental observations and theoretical calculations, and enabled potential analysis applications for complex higher distillate fuels, such as diesel fuel. Further improvement of the methods was proposed.

11.
Chemistry ; 26(10): 2187-2194, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31671223

ABSTRACT

We report the first oxynitride of tin, Sn2 N2 O (SNO), exhibiting a Rh2 S3 -type crystal structure with space group Pbcn. All Sn atoms are in six-fold coordination, in contrast to Si in silicon oxynitride (Si2 N2 O) and Ge in the isostructural germanium oxynitride (Ge2 N2 O), which appear in four-fold coordination. SNO was synthesized at 20 GPa and 1200-1500 °C in a large volume press. The recovered samples were characterized by synchrotron powder X-ray diffraction and single-crystal electron diffraction in the TEM using the automated diffraction tomography (ADT) technique. The isothermal bulk modulus was determined as Bo =193(5) GPa by using in-situ synchrotron X-ray diffraction in a diamond anvil cell. The structure model is supported by DFT calculations. The enthalpy of formation, the bulk modulus, and the band structure have been calculated.

12.
ACS Appl Mater Interfaces ; 11(32): 28681-28689, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31328913

ABSTRACT

One of the major hurdles in the development of antimicrobial peptide (AMP)-based materials is their poor capacity in selectively killing bacteria without harming nearby mammalian cells. Namely, they are antimicrobial but cytotoxic. Current methods of nanoparticle-encapsulated AMPs to target bacteria selectively still have not yet overcome this hurdle. Here, we demonstrate a simple yet effective method to address this daunting challenge by associating a natural AMP with a ß-sheet-forming synthetic peptide. The integrated peptides self-assembled to form a supramolecular nanofiber, resulting in the presentation of the AMP at the nanofiber-solvent interface in a precisely controlled manner. Using melittin as a model natural AMP, we found that the conformation of melittin changed dramatically when presented on the nanofiber surface, which, in turn, modulated the induced membrane permeability of the bacterial and mammalian cell membranes. Specifically, the presentation of melittin on the nanofiber restricted its hydrophobic residues, leading to a reduction of the hydrophobic interaction with lipids in the cell membranes. Compellingly, the reduced hydrophobic interaction led to a considerable decrease of melittin's induced permeability of the mammalian cell membrane than that of the bacterial cell membrane. As a result, the AMP-displaying nanofiber preferentially permeabilized and disrupted the membrane of the bacteria without compromising the mammalian cells. Such improved membrane selectivity and cytocompatibility were confirmed in a cell-based membrane localization and live-dead assay. Our new strategy holds great promise for fabricating cytocompatible antimicrobial assemblies that offer safer and more effective administration of therapeutic AMPs. These assemblies, with intrinsic antimicrobial activity and cytocompatibility, can also serve as building blocks for the construction of higher-ordered scaffolds for other biomedical applications such as tissue engineering and regenerative medicine.


Subject(s)
Anti-Bacterial Agents , Bacteria/growth & development , Materials Testing , Melitten , Nanofibers/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Melitten/chemistry , Melitten/pharmacology , Mice , NIH 3T3 Cells
13.
Dalton Trans ; 48(29): 11018-11033, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31232398

ABSTRACT

The present study introduces a facile single-source precursor preparative access to bamboo-like multiwalled carbon nanotubes (MWCNTs) highly dispersed within a mesoporous silica-rich matrix. The metal-free single-source precursor was synthesized via a one-pot sol-gel process using tetramethyl orthosilicate (TMOS) and 4,4'-dihydroxybiphenyl (DHBP) and converted subsequently via pyrolysis under an argon atmosphere into MWCNT/silica nanocomposites. The in situ segregation of the highly defective bamboo-like MWCNTs was carefully investigated and has been shown to occur within the mesopores of the silica-rich matrix at relatively low temperatures and without the use of a metal catalyst. The experimental results have been supported by extensive computational simulations, which correlate the molecular architecture of the single-source precursor with the structural features of the carbon phase segregating from the silica matrix. Furthermore, the role of hydrogen in the stability of the prepared nanocomposites as well as in the high-temperature evolution and morphology of the segregated MWCNTs has been discussed based on vibrational spectroscopy, calorimetric studies and empirical potential calculations. The results obtained within the present study may allow for designing highly-defined nanocarbon-containing composites with tailored structural features and property profiles.

14.
Materials (Basel) ; 11(12)2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30572610

ABSTRACT

We investigate the impact of solvents on the microstructure of poly(methylhydrosiloxane)/divinylbenzene (PMHS/DVB) aerogels. The gels are obtained in highly diluted conditions via hydrosilylation reaction of PMHS bearing Si-H groups and cross-linking it with C=C groups of DVB. Polymer aerogels are obtained after solvent exchange with liquid CO2 and subsequent supercritical drying. Samples are characterized using microscopy and porosimetry. Common pore-formation concepts do not provide a solid rationale for the observed data. We postulate that solubility and swelling of the cross-linked polymer in various solvents are major factors governing pore formation of these PMHS/DVB polymer aerogels.

15.
Materials (Basel) ; 11(9)2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30205451

ABSTRACT

We investigate 29Si nuclear magnetic resonance (NMR) chemical shifts, δiso, of silicon nitride. Our goal is to relate the local structure to the NMR signal and, thus, provide the means to extract more information from the experimental 29Si NMR spectra in this family of compounds. We apply structural modeling and the gauge-included projector augmented wave (GIPAW) method within density functional theory (DFT) calculations. Our models comprise known and hypothetical crystalline Si3N4, as well as amorphous Si3N4 structures. We find good agreement with available experimental 29Si NMR data for tetrahedral Si[4] and octahedral Si[6] in crystalline Si3N4, predict the chemical shift of a trigonal-bipyramidal Si[5] to be about -120 ppm, and quantify the impact of Si-N bond lengths on 29Si δiso. We show through computations that experimental 29Si NMR data indicates that silicon dicarbodiimide, Si(NCN)2 exhibits bent Si-N-C units with angles of about 143° in its structure. A detailed investigation of amorphous silicon nitride shows that an observed peak asymmetry relates to the proximity of a fifth N neighbor in non-bonding distance between 2.5 and 2.8 Å to Si. We reveal the impact of both Si-N(H)-Si bond angle and Si-N bond length on 29Si δiso in hydrogenated silicon nitride structure, silicon diimide Si(NH)2.

16.
Anal Chim Acta ; 971: 55-67, 2017 Jun 08.
Article in English | MEDLINE | ID: mdl-28456284

ABSTRACT

Distinguishing isomeric representatives of "bath salts", "plant food", "spice", or "legal high" remains a challenge for analytical chemistry. In this work, we used vacuum ultraviolet spectroscopy combined with gas chromatography to address this issue on a set of forty-three designer drugs. All compounds, including many isomers, returned differentiable vacuum ultraviolet/ultraviolet spectra. The pair of 3- and 4-fluoromethcathinones (m/z 181.0903), as well as the methoxetamine/meperidine/ethylphenidate (m/z 247.1572) triad, provided very distinctive vacuum ultraviolet spectral features. On the contrary, spectra of 4-methylethcathinone, 4-ethylmethcathinone, 3,4-dimethylmethcathinone triad (m/z 191.1310) displayed much higher similarities. Their resolution was possible only if pure standards were probed. A similar situation occurred with the ethylone and butylone pair (m/z 221.1052). On the other hand, majority of forty-three drugs was successfully separated by gas chromatography. The detection limits for all the drug standards were in the 2-4 ng range (on-column amount), which is sufficient for determinations of seized drugs during forensics analysis. Further, state-of-the-art time-dependent density functional theory was evaluated for computation of theoretical absorption spectra in the 125-240 nm range as a complementary tool.


Subject(s)
Central Nervous System Stimulants/analysis , Chromatography, Gas , Designer Drugs/analysis , Spectrum Analysis , Isomerism , Vacuum
17.
Article in English | MEDLINE | ID: mdl-28324832

ABSTRACT

Dynamic high resolution liquid chromatography (DHPLC) was used to determine the kinetic and thermodynamic activation parameters of interconversion of three novel pentahelicene derivatives {3,5-bis(trifluoromethyl)benzo[i]pentahelicene, naphtho[1,2-i]pentahelicene and 4-methoxybenzo[i]pentahelicene}. DHPLC was performed on a chiral isopropyl - carbamate cyclofructan 6 (LARIHC CF6-P) column under normal phase conditions. Variation of the column temperature and flow rate was used to study the interconversion process. A computer assisted deconvolution method was employed to determine the individual peak areas and the retention times required for the calculation of apparent enantiomerization energy barriers, enthalphy and entropy of the interconvertion of above defined pentahelicene derivative enantiomers. An ab initio quantum chemistry method was used to estimate theoretical kinetic and thermodynamic interconversion parameters and to evaluate experimental data of these three novel pentahelicene derivative enantiomers.


Subject(s)
Chromatography, High Pressure Liquid/methods , Polycyclic Compounds/chemistry , Kinetics , Models, Molecular , Polycyclic Compounds/isolation & purification , Stereoisomerism , Thermodynamics
18.
Anal Chim Acta ; 945: 1-8, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27968710

ABSTRACT

An issue with most gas chromatographic detectors is their inability to deconvolve coeluting isomers. Dimethylnaphthalenes are a class of compounds that can be particularly difficult to speciate by gas chromatography - mass spectrometry analysis, because of their significant coelution and similar mass spectra. As an alternative, a vacuum ultraviolet spectroscopic detector paired with gas chromatography was used to study the systematic deconvolution of mixtures of coeluting isomers of dimethylnaphthalenes. Various ratio combinations of 75:25; 50:50; 25:75; 20:80; 10:90; 5:95; and 1:99 were prepared to test the accuracy, precision, and sensitivity of the detector for distinguishing overlapping isomers that had distinct, but very similar absorption spectra. It was found that, under reasonable injection conditions, all of the pairwise overlapping isomers tested could be deconvoluted up to nearly two orders of magnitude (up to 99:1) in relative abundance. These experimental deconvolution values were in agreement with theoretical covariance calculations performed for two of the dimethylnaphthalene isomers. Covariance calculations estimated high picogram detection limits for a minor isomer coeluting with low to mid-nanogram quantity of a more abundant isomer. Further characterization of the analytes was performed using density functional theory computations to compare theory with experimental measurements. Additionally, gas chromatography - vacuum ultraviolet spectroscopy was shown to be able to speciate dimethylnaphthalenes in jet and diesel fuel samples.

19.
Anal Chem ; 86(16): 8329-35, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25079505

ABSTRACT

Analytical performance characteristics of a new vacuum ultraviolet (VUV) detector for gas chromatography (GC) are reported. GC-VUV was applied to hydrocarbons, fixed gases, polyaromatic hydrocarbons, fatty acids, pesticides, drugs, and estrogens. Applications were chosen to feature the sensitivity and universal detection capabilities of the VUV detector, especially for cases where mass spectrometry performance has been limited. Virtually all chemical species absorb and have unique gas phase absorption cross sections in the approximately 120-240 nm wavelength range monitored. Spectra are presented, along with the ability to use software for deconvolution of overlapping signals. Some comparisons with experimental synchrotron data and computed theoretical spectra show good agreement, although more work is needed on appropriate computational methods to match the simultaneous broadband electronic and vibronic excitation initiated by the deuterium lamp. Quantitative analysis is governed by Beer-Lambert Law relationships. Mass on-column detection limits reported for representatives of different classes of analytes ranged from 15 (benzene) to 246 pg (water). Linear range measured at peak absorption for benzene was 3-4 orders of magnitude. Importantly, where absorption cross sections are known for analytes, the VUV detector is capable of absolute determination (without calibration) of the number of molecules present in the flow cell in the absence of chemical interferences. This study sets the stage for application of GC-VUV technology across a wide breadth of research areas.

20.
J Am Chem Soc ; 136(9): 3410-23, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24495133

ABSTRACT

The absence of a crystalline SiO phase under ordinary conditions is an anomaly in the sequence of group 14 monoxides. We explore theoretically ordered ground-state and amorphous structures for SiO at P = 1 atm, and crystalline phases also at pressures up to 200 GPa. Several competitive ground-state P = 1 atm structures are found, perforce with Si-Si bonds, and possessing Si-O-Si bridges similar to those in silica (SiO2) polymorphs. The most stable of these static structures is enthalpically just a little more stable than a calculated random bond model of amorphous SiO. In that model we find no segregation into regions of amorphous Si and amorphous SiO2. The P = 1 atm structures are all semiconducting. As the pressure is increased, intriguing new crystalline structures evolve, incorporating Si triangular nets or strips and stishovite-like regions. A heat of formation of crystalline SiO is computed; it is found to be the most negative of all the group 14 monoxides. Yet, given the stability of SiO2, the disproportionation 2SiO(s) → Si(s)+SiO2(s) is exothermic, falling right into the series of group 14 monoxides, and ranging from a highly negative ΔH of disproportionation for CO to highly positive for PbO. There is no major change in the heat of disproportionation with pressure, i.e., no range of stability of SiO with respect to SiO2. The high-pressure SiO phases are metallic.

SELECTION OF CITATIONS
SEARCH DETAIL
...